https://blog.csdn.net/hrsstudy/article/details/65447947?utm_source=itdadao&utm_medium=referral
[net]
batch=64 每batch个样本更新一次参数。
subdivisions=8 如果内存不够大,将batch分割为subdivisions个子batch,每个子batch的大小为batch/subdivisions。
在darknet代码中,会将batch/subdivisions命名为batch。
height=416 input图像的高
width=416 Input图像的宽
channels=3 Input图像的通道数
momentum=0.9 动量
decay=0.0005 权重衰减正则项,防止过拟合
angle=0 通过旋转角度来生成更多训练样本
saturation = 1.5 通过调整饱和度来生成更多训练样本
exposure = 1.5 通过调整曝光量来生成更多训练样本
hue=.1 通过调整色调来生成更多训练样本 learning_rate=0.0001 初始学习率
max_batches = 45000 训练达到max_batches后停止学习
policy=steps 调整学习率的policy,有如下policy:CONSTANT, STEP, EXP, POLY, STEPS, SIG, RANDOM
steps=100,25000,35000 根据batch_num调整学习率
scales=10,.1,.1 学习率变化的比例,累计相乘 [convolutional]
batch_normalize=1 是否做BN
filters=32 输出多少个特征图
size=3 卷积核的尺寸
stride=1 做卷积运算的步长
pad=1 如果pad为0,padding由 padding参数指定。如果pad为1,padding大小为size/2
activation=leaky 激活函数:
logistic,loggy,relu,elu,relie,plse,hardtan,lhtan,linear,ramp,leaky,tanh,stair [maxpool]
size=2 池化层尺寸
stride=2 池化步进 [convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=leaky [maxpool]
size=2
stride=2 ......
...... ####### [convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=1024
activation=leaky [convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=1024
activation=leaky [route] the route layer is to bring finer grained features in from earlier in the network
layers=-9 [reorg] the reorg layer is to make these features match the feature map size at the later layer.
The end feature map is 13x13, the feature map from earlier is 26x26x512.
The reorg layer maps the 26x26x512 feature map onto a 13x13x2048 feature map
so that it can be concatenated with the feature maps at 13x13 resolution.
stride=2 [route]
layers=-1,-3 [convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=1024
activation=leaky [convolutional]
size=1
stride=1
pad=1
filters=125 region前最后一个卷积层的filters数是特定的,计算公式为filter=num*(classes+5)
5的意义是5个坐标,论文中的tx,ty,tw,th,to
activation=linear [region]
anchors = 1.08,1.19, 3.42,4.41, 6.63,11.38, 9.42,5.11, 16.62,10.52 预选框,可以手工挑选,
也可以通过k means 从训练样本中学出
bias_match=1
classes=20 网络需要识别的物体种类数
coords=4 每个box的4个坐标tx,ty,tw,th
num=5 每个grid cell预测几个box,和anchors的数量一致。当想要使用更多anchors时需要调大num,且如果调大num后训练时Obj趋近0的话可以尝试调大object_scale
softmax=1 使用softmax做激活函数
jitter=.2 通过抖动增加噪声来抑制过拟合
rescore=1 暂理解为一个开关,非0时通过重打分来调整l.delta(预测值与真实值的差) object_scale=5 栅格中有物体时,bbox的confidence loss对总loss计算贡献的权重
noobject_scale=1 栅格中没有物体时,bbox的confidence loss对总loss计算贡献的权重
class_scale=1 类别loss对总loss计算贡献的权重
coord_scale=1 bbox坐标预测loss对总loss计算贡献的权重 absolute=1
thresh = .6
random=0 random为1时会启用Multi-Scale Training,随机使用不同尺寸的图片进行训练。
draknet网络配置参数的更多相关文章
-
【CentOS】虚拟机网络配置与远程登录
////////////////////////////////////11月16日更新////////////////////////////////////////////////////// 一 ...
-
centos系统修改网络配置注意事项
这也是无意之中发现的,我在做一个远程修改工控机网络配置的程序, 网络配置参数/etc/sysconfig/network-scripts/ifcfg-enp1s0下面,当然名字可能不一样ifcfg-e ...
-
Ubuntu中网络配置interfaces与界面网络配置NetworkManager
[Server版本] 在Ubuntu Server版本中,因为只存有命令行模式,所以要想进行网络参数设置,只能通过修改 /etc/network/interfaces .具体设置方法如下: (1) U ...
-
Linux系统初学-第三课 Linux网络配置1
Linux系统初学-第三课 Linux网络配置 1.动态IP配置 配置文件路径 /etc/sysconfig/network-scripts/ ls查看网卡eth0,其中HWADDR值得获取:ifco ...
-
Linux 入门之网络配置
查看网络状态 ifconfig 修改网络参数 实验环境centos6.5,其他系统自行百度 ls /etc/sysconfig/network-scripts 显示所有文件, vi /etc/sysc ...
-
linux配置网卡IP地址命令详细介绍及一些常用网络配置命令
linux配置网卡IP地址命令详细介绍及一些常用网络配置命令2010-- 个评论 收藏 我要投稿 Linux命令行下配置IP地址不像图形界面下那么方 便,完全需要我们手动配置,下面就给大家介绍几种配置 ...
-
kafka配置参数
Kafka为broker,producer和consumer提供了很多的配置参数. 了解并理解这些配置参数对于我们使用kafka是非常重要的.本文列出了一些重要的配置参数. 官方的文档 Configu ...
-
mha配置参数详解
mha配置参数详解: 参数名字 是否必须 参数作用域 默认值 示例 hostname Yes Local Only - hostname=mysql_server1, hostname=192.168 ...
-
Virtual Box和Linux的网络配置盲记
近来可能在虚拟机重装了Linux的缘故,在用yum安装软件时出现错误,在提示上连接镜像网站时,都是"linux counldn't resolve host"这样的提示.我估计是l ...
随机推荐
-
JAVA装饰者模式(从现实生活角度理解代码原理)
装饰者模式可以动态地给一个对象添加一些额外的职责.就增加功能来说,Decorator模式相比生成子类更为灵活. 该模式的适用环境为: (1)在不影响其他对象的情况下,以动态.透明的方式给单个对象添加职 ...
-
python之路十二
本节内容 数据库介绍 mysql 数据库安装使用 mysql管理 mysql 数据类型 常用mysql命令 创建数据库 外键 增删改查表 权限 事务 索引 python 操作mysql ORM sql ...
-
collection集合框架
Java类集框架的优势: 1) 这种框架是高性能的.对基本类集(动态数组,链接表,树和散列表)的实现是高效率的.一般很少需要人工去对这些“数据引擎”编写代码. 2) 框架允许 ...
-
Android 亮度调节
最近在做一个App的设置项,亮度调节.真正做时,发现Android亮度调节比预想要复杂一些.其实目前网上已有不少这方面的资料,但有些博文具有一定误导性.在此将这块内容按照自己理解整理一下. 整体上看, ...
-
apache2.2+PHP5.4.28
搭建apache+php开发环境,apache一路正常安装,但是,下载的php搭建后,配置好apache.php,始终报错“The requested operation has failed!”换了 ...
-
RAC 开启gsd和oc4j服务
Oracle 11g RAC中,发现oc4j以及gsd服务都处于offline状态,这是Oracle 11g RAC默认情形.即便如此,并不影响数据库的使用,因为 oc4j 是用于WLM 的一个资源, ...
-
freemarker字符串拼接
freemarker字符串拼接 1.字符串拼接的几种类型 (1)字符串和字符串 (2)字符串和数字 (3)字符串和字符串变量 (4)字符串变量和字符串变量 2.演示示例 <#--定义字符串--& ...
-
pip3 install mysqlclient 报错 “/bin/sh: 1: mysql_config: not found”的解决方法
执行 sudo apt-get install libmysqlclient-dev, 然后执行 pip3 install mysqlclient 成功.
-
LigerUi折叠与展开
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"% ...
-
SaltStack 批量分发目录
这里演示如何将 salt-master 上的目录批量分发到多台 salt-minion,步骤如下: [root@localhost ~]$ cat /srv/salt/top.sls # 先定义入口配 ...