lucene底层数据结构——底层filter bitset原理,时间序列数据压缩将同一时间数据压缩为一行

时间:2022-09-09 13:38:20

如何联合索引查询?

所以给定查询过滤条件 age=18 的过程就是先从term index找到18在term dictionary的大概位置,然后再从term dictionary里精确地找到18这个term,然后得到一个posting list或者一个指向posting list位置的指针。然后再查询 gender=女 的过程也是类似的。最后得出 age=18 AND gender=女 就是把两个 posting list 做一个“与”的合并。

这个理论上的“与”合并的操作可不容易。对于mysql来说,如果你给age和gender两个字段都建立了索引,查询的时候只会选择其中最selective的来用,然后另外一个条件是在遍历行的过程中在内存中计算之后过滤掉。那么要如何才能联合使用两个索引呢?有两种办法:

  • 使用skip list数据结构。同时遍历gender和age的posting list,互相skip;
  • 使用bitset数据结构,对gender和age两个filter分别求出bitset,对两个bitset做AN操作。

PostgreSQL 从 8.4 版本开始支持通过bitmap联合使用两个索引,就是利用了bitset数据结构来做到的。当然一些商业的关系型数据库也支持类似的联合索引的功能。Elasticsearch支持以上两种的联合索引方式,如果查询的filter缓存到了内存中(以bitset的形式),那么合并就是两个bitset的AND。如果查询的filter没有缓存,那么就用skip list的方式去遍历两个on disk的posting list。

利用 Skip List 合并

lucene底层数据结构——底层filter bitset原理,时间序列数据压缩将同一时间数据压缩为一行

以上是三个posting list。我们现在需要把它们用AND的关系合并,得出posting list的交集。首先选择最短的posting list,然后从小到大遍历。遍历的过程可以跳过一些元素,比如我们遍历到绿色的13的时候,就可以跳过蓝色的3了,因为3比13要小。

整个过程如下

Next -> 2
Advance(2) -> 13
Advance(13) -> 13
Already on 13
Advance(13) -> 13 MATCH!!!
Next -> 17
Advance(17) -> 22
Advance(22) -> 98
Advance(98) -> 98
Advance(98) -> 98 MATCH!!!

最后得出的交集是[13,98],所需的时间比完整遍历三个posting list要快得多。但是前提是每个list需要指出Advance这个操作,快速移动指向的位置。什么样的list可以这样Advance往前做蛙跳?skip list:

lucene底层数据结构——底层filter bitset原理,时间序列数据压缩将同一时间数据压缩为一行

从概念上来说,对于一个很长的posting list,比如:

[1,3,13,101,105,108,255,256,257]

我们可以把这个list分成三个block:

[1,3,13] [101,105,108] [255,256,257]

然后可以构建出skip list的第二层:

[1,101,255]

1,101,255分别指向自己对应的block。这样就可以很快地跨block的移动指向位置了。

Lucene自然会对这个block再次进行压缩。其压缩方式叫做Frame Of Reference编码。示例如下:

lucene底层数据结构——底层filter bitset原理,时间序列数据压缩将同一时间数据压缩为一行

考虑到频繁出现的term(所谓low cardinality的值),比如gender里的男或者女。如果有1百万个文档,那么性别为男的posting list里就会有50万个int值。用Frame of Reference编码进行压缩可以极大减少磁盘占用。这个优化对于减少索引尺寸有非常重要的意义。因为这个Frame of Reference的编码是有解压缩成本的。利用skip list,除了跳过了遍历的成本,也跳过了解压缩这些压缩过的block的过程,从而节省了cpu。

利用bitset合并

Bitset是一种很直观的数据结构,对应posting list如:

[1,3,4,7,10]

对应的bitset就是:

[1,0,1,1,0,0,1,0,0,1]

每个文档按照文档id排序对应其中的一个bit。Bitset自身就有压缩的特点,其用一个byte就可以代表8个文档。所以100万个文档只需要12.5万个byte。但是考虑到文档可能有数十亿之多,在内存里保存bitset仍然是很奢侈的事情。而且对于个每一个filter都要消耗一个bitset,比如age=18缓存起来的话是一个bitset,18<=age<25是另外一个filter缓存起来也要一个bitset。

所以秘诀就在于需要有一个数据结构:

  • 可以很压缩地保存上亿个bit代表对应的文档是否匹配filter;
  • 这个压缩的bitset仍然可以很快地进行AND和 OR的逻辑操作。

Lucene使用的这个数据结构叫做 Roaring Bitmap。

lucene底层数据结构——底层filter bitset原理,时间序列数据压缩将同一时间数据压缩为一行

其压缩的思路其实很简单。与其保存100个0,占用100个bit。还不如保存0一次,然后声明这个0重复了100遍。

这两种合并使用索引的方式都有其用途。Elasticsearch对其性能有详细的对比(https://www.elastic.co/blog/frame-of-reference-and-roaring-bitmaps)。简单的结论是:因为Frame of Reference编码是如此高效,对于简单的相等条件的过滤缓存成纯内存的bitset还不如需要访问磁盘的skip list的方式要快。

如何减少文档数?

一种常见的压缩存储时间序列的方式是把多个数据点合并成一行。Opentsdb支持海量数据的一个绝招就是定期把很多行数据合并成一行,这个过程叫compaction。类似的vivdcortext使用mysql存储的时候,也把一分钟的很多数据点合并存储到mysql的一行里以减少行数。例如可以把一段时间的很多个数据点打包存储到一个父文档里,变成其嵌套的子文档。示例如下:

{timestamp:12:05:01, idc:sz, value1:10,value2:11}
{timestamp:12:05:02, idc:sz, value1:9,value2:9}
{timestamp:12:05:02, idc:sz, value1:18,value:17}

可以打包成:

{
max_timestamp:12:05:02, min_timestamp: 1205:01, idc:sz,
records: [
{timestamp:12:05:01, value1:10,value2:11}
{timestamp:12:05:02, value1:9,value2:9}
{timestamp:12:05:02, value1:18,value:17}
]
}

这样可以把数据点公共的维度字段上移到父文档里,而不用在每个子文档里重复存储,从而减少索引的尺寸。如果我们可以在一个父文档里塞入50个嵌套文档,那么posting list可以变成之前的1/50

总结和思考

Elasticsearch的索引思路:

将磁盘里的东西尽量搬进内存,减少磁盘随机读取次数(同时也利用磁盘顺序读特性)。

对于使用Elasticsearch进行索引时需要注意:

  • 不需要索引的字段,一定要明确定义出来,因为默认是自动建索引的
  • 同样的道理,对于String类型的字段,不需要analysis的也需要明确定义出来,因为默认也是会analysis的
  • 选择有规律的ID很重要,随机性太大的ID(比如java的UUID)不利于查询

关于最后一点,个人认为有多个因素:

其中一个(也许不是最重要的)因素: 上面看到的压缩算法,都是对Posting list里的大量ID进行压缩的,那如果ID是顺序的,或者是有公共前缀等具有一定规律性的ID,压缩比会比较高;

另外一个因素: 可能是最影响查询性能的,应该是最后通过Posting list里的ID到磁盘中查找Document信息的那步,因为Elasticsearch是分Segment存储的,根据ID这个大范围的Term定位到Segment的效率直接影响了最后查询的性能,如果ID是有规律的,可以快速跳过不包含该ID的Segment,从而减少不必要的磁盘读次数,具体可以参考这篇如何选择一个高效的全局ID方案(评论也很精彩)

这篇文章非常棒:https://neway6655.github.io/elasticsearch/2015/09/11/elasticsearch-study-notes.html#section-1

lucene底层数据结构——底层filter bitset原理,时间序列数据压缩将同一时间数据压缩为一行的更多相关文章

  1. 聊聊Mysql索引和redis跳表 ---redis的有序集合zset数据结构底层采用了跳表原理 时间复杂度O&lpar;logn&rpar;&lpar;阿里&rpar;

    redis使用跳表不用B+数的原因是:redis是内存数据库,而B+树纯粹是为了mysql这种IO数据库准备的.B+树的每个节点的数量都是一个mysql分区页的大小(阿里面试) 还有个几个姊妹篇:介绍 ...

  2. 深入解析Java对象的hashCode和hashCode在HashMap的底层数据结构的应用

    转自:http://kakajw.iteye.com/blog/935226 一.java对象的比较 等号(==): 对比对象实例的内存地址(也即对象实例的ID),来判断是否是同一对象实例:又可以说是 ...

  3. Redis详解(四)------ redis的底层数据结构

    上一篇博客我们介绍了 redis的五大数据类型详细用法,但是在 Redis 中,这几种数据类型底层是由什么数据结构构造的呢?本篇博客我们就来详细介绍Redis中五大数据类型的底层实现. 1.演示数据类 ...

  4. Redis(二)--- Redis的底层数据结构

    1.Redis的数据结构 Redis 的底层数据结构包含简单的动态字符串(SDS).链表.字典.压缩列表.整数集合等等:五大数据类型(数据对象)都是由一种或几种数结构构成. 在命令行中可以使用 OBJ ...

  5. MySQL索引底层数据结构

    一.何为索引? 1.索引是帮助数据库高效获取数据的排好序的数据结构. 2.索引存储在文件中. 3.索引建多了会影响增删改效率. (下面这张图为计算机组成原理内容,每查询一次索引节点,都会进行一次磁盘I ...

  6. Redis 详解 &lpar;四&rpar; redis的底层数据结构

    目录 1.演示数据类型的实现 2.简单动态字符串 3.链表 4.字典 5.跳跃表 6.整数集合 7.压缩列表 8.总结 上一篇博客我们介绍了 redis的五大数据类型详细用法,但是在 Redis 中, ...

  7. 一文读懂Redis常见对象类型的底层数据结构

    Redis是一个基于内存中的数据结构存储系统,可以用作数据库.缓存和消息中间件.Redis支持五种常见对象类型:字符串(String).哈希(Hash).列表(List).集合(Set)以及有序集合( ...

  8. Redis学习笔记(二)redis 底层数据结构

    在上一节提到的图中,我们知道,可以通过 redisObject 对象的 type 和 encoding 属性.可以决定Redis 主要的底层数据结构:SDS.QuickList.ZipList.Has ...

  9. 深入浅出Redis-redis底层数据结构(上)

    1.概述 相信使用过Redis 的各位同学都很清楚,Redis 是一个基于键值对(key-value)的分布式存储系统,与Memcached类似,却优于Memcached的一个高性能的key-valu ...

随机推荐

  1. jQuery静态方法isFunction&comma;isArray&comma;isWindow&comma;isNumeric使用和源码分析

    上一篇随笔中总结了js数据类型检测的几个方法和jQuery的工具方法type方法,本篇要分析几个方法都依赖type方法,所以不了解type方法的请先参看http://www.cnblogs.com/y ...

  2. &lpar;转&rpar;Android中截取当前屏幕图片

    该篇文章是说明在Android手机或平板电脑中如何实现截取当前屏幕的功能,并把截取的屏幕保存到SDCard中的某个目录文件夹下面.实现的代码如下: /** * 获取和保存当前屏幕的截图 */ priv ...

  3. 每天一个linux命令&lpar;54&rpar;--watch命令

    watch是一个非常实用的命,基本所有的Linux发行版都带有这个小工具,如同名字一样,watch可以帮你监测一个命令的运行结果,省的你一遍遍的手动运行,在Linux下,watch是周期性的执行下个程 ...

  4. Vim常用操作-Nginx配置文件批量加注释。

    刚接触 Vim 会觉得它的学习曲线非常陡峭,要记住很多命令.所以这个系列的分享,不会教你怎么配置它,而是教你怎么快速的使用它. 本期我们要实现给 Nginx 配置文件批量注释的功能,先来看效果: 操作 ...

  5. form表单发送请求实例

    <%@ page language="java" contentType="text/html; charset=UTF-8"    pageEncodi ...

  6. 三、View的事件体系

    1.View基础知识 1.1.什么是View View是Android中所有控件的基类.View是一种界面层的控件的一种抽象,代表了一个控件.除了View,还有ViewGroup,内部包含了许多个控件 ...

  7. Redis(REmote DIctionary Server)基础

    Redis(REmote DIctionary Server)基础 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. Redis是一个开放源代码(BSD许可)的内存数据结构存储,用作数 ...

  8. 转-C语言中&period;h和&period;c文件解析

    C语言中.h和.c文件解析(很精彩)   简单的说其实要理解C文件与头文件(即.h)有什么不同之处,首先需要弄明白编译器的工作过程,一般说来编译器会做以下几个过程:       1.预处理阶段 2.词 ...

  9. mybatis-generator 自动生成查询Vo

    package com.witwicky.plugins; import org.mybatis.generator.api.GeneratedJavaFile; import org.mybatis ...

  10. 破解AI大脑黑盒迈出新一步!谷歌现在更懂机器,还开源了研究工具

    https://zhuanlan.zhihu.com/p/34306323 https://distill.pub/2018/building-blocks/