题目描述
经过了几周的辛苦工作,贝茜终于迎来了一个假期.作为奶牛群中最会社交的牛,她希望去拜访N(1<=N<=50000)个朋友.这些朋友被标号为1..N.这些奶牛有一个不同寻常的交通系统,里面有N-1条路,每条路连接了一对编号为C1和C2的奶牛(1 <= C1 <= N; 1 <= C2 <= N; C1<>C2).这样,在每一对奶牛之间都有一条唯一的通路. FJ希望贝茜尽快的回到农场.于是,他就指示贝茜,如果对于一条路直接相连的两个奶牛,贝茜只能拜访其中的一个.当然,贝茜希望她的假期越长越好,所以她想知道她可以拜访的奶牛的最大数目.
输入
第1行:单独的一个整数N
第2..N行:每一行两个整数,代表了一条路的C1和C2.
输出
单独的一个整数,代表了贝茜可以拜访的奶牛的最大数目.
样例输入
7
6 2
3 4
2 3
1 2
7 6
5 6
样例输出
4
题解
裸的树形dp。
f[x]代表拜访x时最大数量,g[x]代表不拜访x时最大数量。
那么易推得f[x]=1+∑g[to[i]],g[x]=∑max(f[to[i]],g[to[i]])。
答案即为max(f[1],g[1])。
#include <stdio.h>
#include <string.h>
int to[100001] , next[100001] , head[50001] , f[50001] , g[50001] , cnt;
int max(int a , int b)
{
return a > b ? a : b;
}
void add(int x , int y)
{
to[cnt] = y;
next[cnt] = head[x];
head[x] = cnt ++ ;
}
void dp(int x , int last)
{
int i , y;
f[x] = 1;
for(i = head[x] ; i != -1 ; i = next[i])
{
y = to[i];
if(y == last)
continue;
dp(y , x);
f[x] += g[y];
g[x] += max(f[y] , g[y]);
}
}
int main()
{
int n , i , x , y;
scanf("%d" , &n);
memset(head , -1 , sizeof(head));
for(i = 1 ; i <= n - 1 ; i ++ )
{
scanf("%d%d" , &x , &y);
add(x , y);
add(y , x);
}
dp(1 , 0);
printf("%d\n" , max(f[1] , g[1]));
return 0;
}
【bzoj2060】[Usaco2010 Nov]Visiting Cows拜访奶牛的更多相关文章
-
[bzoj2060][Usaco2010 Nov]Visiting Cows 拜访奶牛_树形dp
Visiting Cows 拜访奶牛 bzoj-2060 Usaco-2010 Nov 题目大意:题目链接. 注释:略. 想法:看起来像支配集. 只是看起来像而已. 状态:dp[pos][flag]表 ...
-
[codevs1380]没有上司的舞会([BZOJ2060][Usaco2010 Nov]Visiting Cows 拜访奶牛)
[codevs1380]没有上司的舞会 试题描述 Ural大学有N个职员,编号为1~N.他们有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.每个职员有一个快乐指数.现 ...
-
BZOJ2060: [Usaco2010 Nov]Visiting Cows 拜访奶牛
n<=50000个点的树,求选最多不相邻点的个数. f[i][0]=sigma max(f[j][0],f[j][1]),j为i的儿子 f[i][1]=sigma f[j][0],j同上 死于未 ...
-
BZOJ 2060: [Usaco2010 Nov]Visiting Cows 拜访奶牛( dp )
树形dp..水 ------------------------------------------------------------------------ #include<cstdio& ...
-
2060: [Usaco2010 Nov]Visiting Cows 拜访奶牛
2060: [Usaco2010 Nov]Visiting Cows 拜访奶牛 Time Limit: 3 Sec Memory Limit: 64 MBSubmit: 252 Solved: 1 ...
-
【BZOJ】2060: [Usaco2010 Nov]Visiting Cows 拜访奶牛(树形dp)
http://www.lydsy.com/JudgeOnline/problem.php?id=2060 裸的树形dp d[x][1]表示访问x的数量,d[x][0]表示不访问x的数量 d[x][1] ...
-
【bzoj2060】[Usaco2010 Nov]Visiting Cows拜访奶牛 树形dp
题目描述 经过了几周的辛苦工作,贝茜终于迎来了一个假期.作为奶牛群中最会社交的牛,她希望去拜访N(1<=N<=50000)个朋友.这些朋友被标号为1..N.这些奶牛有一个不同寻常的交通系统 ...
-
【BZOJ】2060: [Usaco2010 Nov]Visiting Cows 拜访奶牛
[算法]树形DP [题解]没有上司的舞会?233 f[x][0]=∑max(f[v][0],f[v][1]) f[x][1]=(∑f[v][0])+1 #include<cstdio> # ...
-
bzoj 2060: [Usaco2010 Nov]Visiting Cows 拜访奶牛【树形dp】
设f[u][0/1]为u这个点不选/选,转移的时候从儿子转移,f[u][1]=sum(f[son][0])+1,f[u][0]=sum(max(f[son][0],f[e[i].to][1])) #i ...
随机推荐
-
CentOS7 重置root密码
1- 在启动grub菜单,选择编辑选项启动 2 - 按键盘e键,来进入编辑界面 3 - 找到Linux 16的那一行,将ro改为rw init=/sysroot/bin/sh 4 - 现在按下 Con ...
-
cdoj 24 8球胜负(eight) 水题
8球胜负(eight) Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.uestc.edu.cn/#/problem/show/24 ...
-
【Java】推断文件的后缀名
这本来不是一个问题,利用框架本来有的方法.或者File类的getPath()方法,取出要推断文件路径.或者getName()方法取出文件路径,成为一个String字符串如果为fileName之后,再对 ...
-
mysql计算连续天数,mysql连续登录天数,连续天数统计
mysql计算连续天数,mysql连续登录天数,连续天数统计 >>>>>>>>>>>>>>>>>& ...
-
js 全选/取消
平时常用一个小功能 var check_all = document.getElementsByName('student_box'); var check_flag = true; function ...
-
spring boot之hello
自己使用springboot也已经写过一段时间的代码,但是对springboot真正运行的流程还是有点模糊,今天写出自己对springboot的认识,如有不对,还请各位大佬不吝赐教,话不多说,直接上代 ...
-
angular 使用window事件
1. 使用host 2. 使用HostListener 推荐使用第二种方式. 不推荐下面的方法,虽然也能进行window事件的绑定,但组件销毁后,window事件任然保留,即使手动在组件的ngOn ...
-
基于folly的AtomicIntrusiveLinkedList无锁队列进行简单封装的多生产多消费模型
1.基于folly的AtomicIntrusiveLinkedList略微修改的无锁队列代码: #ifndef FOLLY_REVISE_H #define FOLLY_REVISE_H namesp ...
-
Python acos() 函数
描述 acos() 返回x的反余弦弧度值. 语法 以下是 acos() 方法的语法: import math math.acos(x) 注意:acos()是不能直接访问的,需要导入 math 模块,然 ...
-
svn .externals 属性
问:如下自定下载关联模块呢? 答:第一步: 编辑svn.externals文本,如下所示 dir/moduel_name URL/module dir/moduel_name URL/module 第 ...