Adaboost、RandomFrest、GBRT都是基于决策树的组合算法
Adaboost是通过迭代地学习每一个基分类器,每次迭代中,把上一次错分类的数据权值增大,正确分类的数据权值减小,然后将基分类器的线性组合作为一个强分类器,同时给分类误差率较小的基本分类器以大的权值,给分类误差率较大的基分类器以小的权重值。
Adaboost使用的是自适应的方法,其中概率分布式变化的,关注的是难分类的样本。
随机森林RandomForest算法通过随机的方式建立一个森林,森林里的树相互独立。在新样本进来时,采用投票抉择出其所属的类别(分类问题)
在建树的过程中,有两点需要注意,即采样与完全分裂。随机森林不仅对样本进行抽样,还对变量进行抽样。
RF对输入的数据采用有放回的方式获取N个样本(行采样),这样使得在训练的时候,每一棵树的输入样本都不是全部的样本,相对不容易出现over-fitting过拟合,然后从M个feature特征中,选择m个(m << M)(列采样);之后就是对采样之后的数据使用完全分裂的方式建立出决策树,这样决策树的某一个叶子节点要么是无法继续分裂的,要么里面的所有样本的都是指向的同一个类别,分裂的办法是:采用上面说的列采样的过程从这m个属性中采用某种策略(比如说信息增益)来选择1个属性作为该节点的分裂属性
RF的两个随机采样的过程保证了随机性,所以就算不剪枝也不会出现over-fitting。随机森林的分类准确率可以与adaboost媲美。它对噪声数据更加鲁棒,运行速度比adaboost也快得多。
梯度提升树的每一次计算都是为了减少上一次的残差(residual),而为了减少这些残差,可以在残差减少的梯度(Gradient)方向上建立一个新模型。所以说,在Gradient Boost中,每个新模型的建立是为了使得先前模型残差往梯度方向减少
摘自:http://blog.csdn.net/dream_angel_z/article/details/48085889