4 seconds
512 megabytes
standard input
standard output
Yash loves playing with trees and gets especially excited when they have something to do with prime numbers. On his 20th birthday he was granted with a rooted tree of n nodes to answer queries on. Hearing of prime numbers on trees, Yash gets too intoxicated with excitement and asks you to help out and answer queries on trees for him. Tree is rooted at node 1. Each node i has some value aiassociated with it. Also, integer m is given.
There are queries of two types:
- for given node v and integer value x, increase all ai in the subtree of node v by value x
- for given node v, find the number of prime numbers p less than m, for which there exists a node u in the subtree of v and a non-negative integer value k, such that au = p + m·k.
The first of the input contains two integers n and m (1 ≤ n ≤ 100 000, 1 ≤ m ≤ 1000) — the number of nodes in the tree and value mfrom the problem statement, respectively.
The second line consists of n integers ai (0 ≤ ai ≤ 109) — initial values of the nodes.
Then follow n - 1 lines that describe the tree. Each of them contains two integers ui and vi (1 ≤ ui, vi ≤ n) — indices of nodes connected by the i-th edge.
Next line contains a single integer q (1 ≤ q ≤ 100 000) — the number of queries to proceed.
Each of the last q lines is either 1 v x or 2 v (1 ≤ v ≤ n, 0 ≤ x ≤ 109), giving the query of the first or the second type, respectively. It's guaranteed that there will be at least one query of the second type.
For each of the queries of the second type print the number of suitable prime numbers.
8 20
3 7 9 8 4 11 7 3
1 2
1 3
3 4
4 5
4 6
4 7
5 8
4
2 1
1 1 1
2 5
2 4
3
1
1
5 10
8 7 5 1 0
1 2
2 3
1 5
2 4
3
1 1 0
1 1 2
2 2
2 题目给的第二个操作, Ai = p+k*m就相当于问Ai%m是不是素数, 想到这个就好做了....每一个节点一个bitset, 然后查询完之后结果与一个素数表进行&操作, 看还剩下几个值, 答案就是几。
#include <iostream>
#include <vector>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <map>
#include <set>
#include <string>
#include <queue>
#include <stack>
#include <bitset>
using namespace std;
#define pb(x) push_back(x)
#define ll long long
#define mk(x, y) make_pair(x, y)
#define lson l, m, rt<<1
#define mem(a) memset(a, 0, sizeof(a))
#define rson m+1, r, rt<<1|1
#define mem1(a) memset(a, -1, sizeof(a))
#define mem2(a) memset(a, 0x3f, sizeof(a))
#define rep(i, n, a) for(int i = a; i<n; i++)
#define fi first
#define se second
typedef pair<int, int> pll;
const double PI = acos(-1.0);
const int inf = ;
const int dir[][] = { {-, }, {, }, {, -}, {, } };
const int maxn = 1e5+;
int in[maxn], out[maxn], dfs_clock, mod, add[maxn<<];
bitset <> sum[maxn<<], prime;
int head[maxn*], num, a[maxn], b[maxn], vx[];
struct node
{
int to, nextt;
}e[maxn*];
void addd(int u, int v) {
e[num].to = v, e[num].nextt = head[u], head[u] = num++;
}
void init() {
num = ;
mem1(head);
}
void dfs(int u, int fa) {
in[u] = ++dfs_clock;
for(int i = head[u]; ~i; i = e[i].nextt) {
int v = e[i].to;
if(v == fa)
continue;
dfs(v, u);
}
out[u] = dfs_clock;
}
inline void pushUp(int rt) {
sum[rt] = sum[rt<<]|sum[rt<<|];
}
inline void change(int rt, int val) {
sum[rt] = (sum[rt]<<val)|(sum[rt]>>(mod-val));
}
void pushDown(int rt) {
if(add[rt]) {
change((rt<<), add[rt]);
change((rt<<|), add[rt]);
add[rt<<] = (add[rt]+add[rt<<])%mod;
add[rt<<|] = (add[rt]+add[rt<<|])%mod;
add[rt] = ;
}
}
void build(int l, int r, int rt) {
if(l == r) {
sum[rt][b[l]] = ;
return ;
}
int m = l+r>>;
build(lson);
build(rson);
pushUp(rt);
}
void update(int L, int R, int val, int l, int r, int rt) {
if(L<=l&&R>=r) {
change(rt, val);
add[rt] = (val+add[rt])%mod;
return ;
}
pushDown(rt);
int m = l+r>>;
if(L<=m)
update(L, R, val, lson);
if(R>m)
update(L, R, val, rson);
pushUp(rt);
}
bitset<> query(int L, int R, int l, int r, int rt) {
if(L<=l&&R>=r) {
return sum[rt];
}
pushDown(rt);
bitset<> ret;
ret.reset();
int m = l+r>>;
if(L<=m)
ret |= query(L, R, lson);
if(R>m)
ret |= query(L, R, rson);
return ret;
}
int main()
{
int n, u, v, q, x, y, z;
scanf("%d%d", &n, &mod);
init();
for(int i = ; i<=n; i++) {
scanf("%d", &a[i]);
a[i] %= mod;
}
for(int i = ; i<n; i++) {
scanf("%d%d", &u, &v);
addd(u, v);
addd(v, u);
}
for(int i = ; i<mod; i++)
{
if(vx[i])
continue;
prime[i] = ;
for(int j = i; j<mod; j+=i)
vx[j]=;
}
dfs(, -);
for(int i = ; i<=n; i++) {
b[in[i]] = a[i];
}
build(, n, );
scanf("%d", &q);
while(q--) {
scanf("%d%d", &x, &y);
if(x == ) {
scanf("%d", &z);
z %= mod;
update(in[y], out[y], z, , n, );
} else {
bitset<> tmp = query(in[y], out[y], , n, );
tmp &= prime;
printf("%d\n", tmp.count());
}
}
return ;
}
codeforces 633G. Yash And Trees dfs序+线段树+bitset的更多相关文章
-
Manthan, Codefest 16 G. Yash And Trees dfs序+线段树+bitset
G. Yash And Trees 题目连接: http://www.codeforces.com/contest/633/problem/G Description Yash loves playi ...
-
codeforces 620E. New Year Tree dfs序+线段树+bitset
题目链接 给一棵树, 每个节点有颜色, 两种操作, 一种是将一个节点的子树全都染色成c, 一种是查询一个节点的子树有多少个不同的颜色, c<=60. 每个节点一个bitset维护就可以. #in ...
-
Codeforces 343D Water Tree(DFS序 + 线段树)
题目大概说给一棵树,进行以下3个操作:把某结点为根的子树中各个结点值设为1.把某结点以及其各个祖先值设为0.询问某结点的值. 对于第一个操作就是经典的DFS序+线段树了.而对于第二个操作,考虑再维护一 ...
-
Codeforces Round #169 (Div. 2) E. Little Girl and Problem on Trees dfs序+线段树
E. Little Girl and Problem on Trees time limit per test 2 seconds memory limit per test 256 megabyte ...
-
Codeforces633G(SummerTrainingDay06-I dfs序+线段树+bitset)
G. Yash And Trees time limit per test:4 seconds memory limit per test:512 megabytes input:standard i ...
-
DFS序+线段树+bitset CF 620E New Year Tree(圣诞树)
题目链接 题意: 一棵以1为根的树,树上每个节点有颜色标记(<=60),有两种操作: 1. 可以把某个节点的子树的节点(包括本身)都改成某种颜色 2. 查询某个节点的子树上(包括本身)有多少个不 ...
-
CodeForces 620E:New Year Tree(dfs序+线段树)
E. New Year Treetime limit per test3 secondsmemory limit per test256 megabytesinputstandard inputout ...
-
CodeForces 877E DFS序+线段树
CodeForces 877E DFS序+线段树 题意 就是树上有n个点,然后每个点都有一盏灯,给出初始的状态,1表示亮,0表示不亮,然后有两种操作,第一种是get x,表示你需要输出x的子树和x本身 ...
-
Educational Codeforces Round 6 E dfs序+线段树
题意:给出一颗有根树的构造和一开始每个点的颜色 有两种操作 1 : 给定点的子树群体涂色 2 : 求给定点的子树中有多少种颜色 比较容易想到dfs序+线段树去做 dfs序是很久以前看的bilibili ...
随机推荐
-
js节点操作
在看<javascript高级程序设计>,看到节点操作这一块,觉得我只知道用appendChild(),太肤浅了,记录下学到的东西. 每个节点都有一个 parentNode 属性,该属性指 ...
-
ganymedssh2 java执行linux命令
需要下载ganymed-ssh2-262.jar package ganymed; import java.io.BufferedReader; import java.io.IOException; ...
-
百度地图之UI控制
在本文中主要介绍百度地图UI控制功能,即控制地图是否有缩放.平移.双击放大.旋转.俯视的功能以及控制是否显示内置缩放组件.指南针位置等.在文中采用标签监听使每个控制功能的方法见名知义,代码原型来源百度 ...
-
mysql的压缩特性-需求
需求:最近有个插入量比较大的应用需要上,每天的插入量在1亿左右,同时会有较少的查询,表的单行长度在0.5k,就数据而言每天有近50G数据,由于每天写一张新表,保留30天的数据,一个月下来也要1.5T, ...
-
myeclipse安装spring插件
1.查看 myeclipse 中的 eclipse 对应的版本 2.下载对应eclipse的 spring 插件 首先要安装spring插件,可以到spring官网下载 地址(https://spr ...
-
JavaScript匿名函数入门。
1.第一种匿名函数的使用:简单的调用 var f=function(){ return 'Hello'; }; //匿名函数没法调用,只能赋值,所以作为赋值语句后面得加分号 var result= ...
-
三台机器之间ssh互信配置
三台机器之间ssh互信配置 环境介绍:192.168.65.128 my1-222192.168.65.129 my2-223192.168.65.130 web224 # 步骤一:# ...
-
msgpack生成lib,vs新建lib等
记录导师交给的任务 新建一个c++项目,运行老师的msgpack的cpp文件,然后会生成相应的lib,我做的东西需要调用到它(这是老师改写后的msgpack的lib) 我的任务是建一个静态库,将客户端 ...
-
oracle之 获取建表ddl语句
第一种方法是使用工具,如:pl/sql developer,在[工具]--[导出用户对象]出现就可以得到建表脚本. 第二种方法是,sql语句. DBMS_METADATA.GET_DDL包可以得到数据 ...
-
shell习题第9题:sed的常用用法
[题目要求] 把一个文本文档的前5行中包含字母的行删除掉,同时把6到10行中的全部字母删除掉. [核心要点] sed命令 [脚本] .txt |sed '/[a-zA-Z]/d' .txt |sed ...