介绍 什么是分层数据? 类似于树形结构,除了根节点和叶子节点外,所有节点都有用一个父节点和多个子节点。 那么,在MySQL中如何处理分层数据呢? 原文中介绍了两种分层结构模型:邻接表模型和嵌套集合模型。 邻接表模型(The Adjacency List Model) 首先,建立测试表,导入测试数据, CREATE TABLE category( category_id INT AUTO_INCREMENT PRIMARY KEY, name VARCHAR(20) NOT NULL, parent INT DEFAULT NULL ); INSERT INTO category VALUES (1,'ELECTRONICS',NULL), (2,'TELEVISIONS',1), (3,'TUBE',2), (4,'LCD',2), (5,'PLASMA',2), (6,'PORTABLE ELECTRONICS',1), (7,'MP3 PLAYERS',6), (8,'FLASH',7), (9,'CD PLAYERS',6), (10,'2 WAY RADIOS',6); SELECT * FROM category ORDER BY category_id; +-------------+----------------------+--------+ | category_id | name | parent | +-------------+----------------------+--------+ | 1 | ELECTRONICS | NULL | | 2 | TELEVISIONS | 1 | | 3 | TUBE | 2 | | 4 | LCD | 2 | | 5 | PLASMA | 2 | | 6 | PORTABLE ELECTRONICS | 1 | | 7 | MP3 PLAYERS | 6 | | 8 | FLASH | 7 | | 9 | CD PLAYERS | 6 | | 10 | 2 WAY RADIOS | 6 | +-------------+----------------------+--------+ 10 rows in set (0.00 sec) 在邻接表中,所有的数据均拥有一个Parent字段,用来存储它的父节点。当前节点为根节点的话,它的父节点则为NULL。 那么在遍历的时候,可以使用递归来实现查询整棵树,从根节点开始,不断寻找子节点(父节点->子节点->父节点->子节点)。 检索分层路径 一般需要获取一个分层结构的路径问题,那么 SELECT t1.name AS lev1, t2.name as lev2, t3.name as lev3, t4.name as lev4 FROM category AS t1 LEFT JOIN category AS t2 ON t2.parent = t1.category_id LEFT JOIN category AS t3 ON t3.parent = t2.category_id LEFT JOIN category AS t4 ON t4.parent = t3.category_id WHERE t1.name = 'ELECTRONICS'; +-------------+----------------------+--------------+-------+ | lev1 | lev2 | lev3 | lev4 | +-------------+----------------------+--------------+-------+ | ELECTRONICS | TELEVISIONS | TUBE | NULL | | ELECTRONICS | TELEVISIONS | LCD | NULL | | ELECTRONICS | TELEVISIONS | PLASMA | NULL | | ELECTRONICS | PORTABLE ELECTRONICS | MP3 PLAYERS | FLASH | | ELECTRONICS | PORTABLE ELECTRONICS | CD PLAYERS | NULL | | ELECTRONICS | PORTABLE ELECTRONICS | 2 WAY RADIOS | NULL | +-------------+----------------------+--------------+-------+ 6 rows in set (0.00 sec) 检索叶子节点 SELECT t1.name FROM category AS t1 LEFT JOIN category as t2 ON t1.category_id = t2.parent WHERE t2.category_id IS NULL; +--------------+ | name | +--------------+ | TUBE | | LCD | | PLASMA | | FLASH | | CD PLAYERS | | 2 WAY RADIOS | +--------------+ 检索指定路径 SELECT t1.name AS lev1, t2.name as lev2, t3.name as lev3, t4.name as lev4 FROM category AS t1 LEFT JOIN category AS t2 ON t2.parent = t1.category_id LEFT JOIN category AS t3 ON t3.parent = t2.category_id LEFT JOIN category AS t4 ON t4.parent = t3.category_id WHERE t1.name = 'ELECTRONICS' AND t4.name = 'FLASH'; +-------------+----------------------+-------------+-------+ | lev1 | lev2 | lev3 | lev4 | +-------------+----------------------+-------------+-------+ | ELECTRONICS | PORTABLE ELECTRONICS | MP3 PLAYERS | FLASH | +-------------+----------------------+-------------+-------+ 1 row in set (0.01 sec) 邻接表的缺点 在检索路径的过程中,除了本层外,每一层都会对应一个LEFT JOIN,那么如果层数不定怎么办?或者层数过多? 在删除中间层的节点时,需要同时删除该节点下的所有节点,否则会出现孤立节点。 嵌套集合模型Nested Set Model 原文中主要的目的是介绍嵌套集合模型,如下 通过集合的包含关系,嵌套结合模型可以表示分层结构,每一个分层可以用一个Set来表示(一个圈),父节点所在的圈包含所有子节点所在的圈。 为了用MySQL来表示集合关系,需要定义连个字段left和right(表示一个集合的范围)。 CREATE TABLE nested_category ( category_id INT AUTO_INCREMENT PRIMARY KEY, name VARCHAR(20) NOT NULL, lft INT NOT NULL, rgt INT NOT NULL ); INSERT INTO nested_category VALUES (1,'ELECTRONICS',1,20), (2,'TELEVISIONS',2,9), (3,'TUBE',3,4), (4,'LCD',5,6), (5,'PLASMA',7,8), (6,'PORTABLE ELECTRONICS',10,19), (7,'MP3 PLAYERS',11,14), (8,'FLASH',12,13), (9,'CD PLAYERS',15,16), (10,'2 WAY RADIOS',17,18); SELECT * FROM nested_category ORDER BY category_id; +-------------+----------------------+-----+-----+ | category_id | name | lft | rgt | +-------------+----------------------+-----+-----+ | 1 | ELECTRONICS | 1 | 20 | | 2 | TELEVISIONS | 2 | 9 | | 3 | TUBE | 3 | 4 | | 4 | LCD | 5 | 6 | | 5 | PLASMA | 7 | 8 | | 6 | PORTABLE ELECTRONICS | 10 | 19 | | 7 | MP3 PLAYERS | 11 | 14 | | 8 | FLASH | 12 | 13 | | 9 | CD PLAYERS | 15 | 16 | | 10 | 2 WAY RADIOS | 17 | 18 | +-------------+----------------------+-----+-----+ 由于left和right是MySQL的保留字,因此,字段名称用lft和rgt代替。每一个集合都是从lft开始到rgt结束,也就是集合的两个边界。 在树中也同样适用, 当为树状结构编号时,我们从左到右,一次一层,赋值按照从左到右的顺序遍历其子节点,这种方法称为先序遍历算法。 检索分层路径 由于子节点的lft值总在父节点的lft和rgt值之间,所以可以通过父节点连接到子节点上来检索整棵树。 SELECT node.name FROM nested_category AS node, nested_category AS parent WHERE node.lft BETWEEN parent.lft AND parent.rgt AND parent.name = 'ELECTRONICS' ORDER BY node.lft; +----------------------+ | name | +----------------------+ | ELECTRONICS | | TELEVISIONS | | TUBE | | LCD | | PLASMA | | PORTABLE ELECTRONICS | | MP3 PLAYERS | | FLASH | | CD PLAYERS | | 2 WAY RADIOS | +----------------------+</pre> 这个方法并不需要考虑层数,而且不需要考虑节点的rgt。 检索所有叶子节点 由于每一个叶子节点的rgt=lft+1,那么只需要这一个条件即可。 SELECT name FROM nested_category WHERE rgt = lft + 1; +--------------+ | name | +--------------+ | TUBE | | LCD | | PLASMA | | FLASH | | CD PLAYERS | | 2 WAY RADIOS | +--------------+ 检索节点路径 不再需要多个join连接操作。 SELECT parent.name FROM nested_category AS node, nested_category AS parent WHERE node.lft BETWEEN parent.lft AND parent.rgt AND node.name = 'FLASH' ORDER BY node.lft; +----------------------+ | name | +----------------------+ | ELECTRONICS | | PORTABLE ELECTRONICS | | MP3 PLAYERS | | FLASH | +----------------------+ 检索节点深度 通过COUNT和GROUP BY函数来获取父节点的个数。 SELECT node.name, (COUNT(parent.name) - 1) AS depth FROM nested_category AS node, nested_category AS parent WHERE node.lft BETWEEN parent.lft AND parent.rgt GROUP BY node.name ORDER BY node.lft; +----------------------+-------+ | name | depth | +----------------------+-------+ | ELECTRONICS | 0 | | TELEVISIONS | 1 | | TUBE | 2 | | LCD | 2 | | PLASMA | 2 | | PORTABLE ELECTRONICS | 1 | | MP3 PLAYERS | 2 | | FLASH | 3 | | CD PLAYERS | 2 | | 2 WAY RADIOS | 2 | +----------------------+-------+ 甚至可以得到分层的缩进结果, SELECT CONCAT( REPEAT(' ', COUNT(parent.name) - 1), node.name) AS name FROM nested_category AS node, nested_category AS parent WHERE node.lft BETWEEN parent.lft AND parent.rgt GROUP BY node.name ORDER BY node.lft; +-----------------------+ | name | +-----------------------+ | ELECTRONICS | | TELEVISIONS | | TUBE | | LCD | | PLASMA | | PORTABLE ELECTRONICS | | MP3 PLAYERS | | FLASH | | CD PLAYERS | | 2 WAY RADIOS | +-----------------------+ 检索子树的深度 考虑到检索中需要自连接的node或parent,因此需要增加一个额外的连接来作为子查询来限制子树。 SELECT node.name, (COUNT(parent.name) - (sub_tree.depth + 1)) AS depth FROM nested_category AS node, nested_category AS parent, nested_category AS sub_parent, ( SELECT node.name, (COUNT(parent.name) - 1) AS depth FROM nested_category AS node, nested_category AS parent WHERE node.lft BETWEEN parent.lft AND parent.rgt AND node.name = 'PORTABLE ELECTRONICS' GROUP BY node.name ORDER BY node.lft )AS sub_tree WHERE node.lft BETWEEN parent.lft AND parent.rgt AND node.lft BETWEEN sub_parent.lft AND sub_parent.rgt AND sub_parent.name = sub_tree.name GROUP BY node.name ORDER BY node.lft; +----------------------+-------+ | name | depth | +----------------------+-------+ | PORTABLE ELECTRONICS | 0 | | MP3 PLAYERS | 1 | | FLASH | 2 | | CD PLAYERS | 1 | | 2 WAY RADIOS | 1 | +----------------------+-------+ 检索节点的直接子节点 假设一个场景,当用户点击网站上电子产品的一个分类时,将呈现该分类下的产品,同时需要列出所有子分类,并不是全部分类。 为了限制显示分类的层数,需要使用HAVING字句, SELECT node.name, (COUNT(parent.name) - (sub_tree.depth + 1)) AS depth FROM nested_category AS node, nested_category AS parent, nested_category AS sub_parent, ( SELECT node.name, (COUNT(parent.name) - 1) AS depth FROM nested_category AS node, nested_category AS parent WHERE node.lft BETWEEN parent.lft AND parent.rgt AND node.name = 'PORTABLE ELECTRONICS' GROUP BY node.name ORDER BY node.lft )AS sub_tree WHERE node.lft BETWEEN parent.lft AND parent.rgt AND node.lft BETWEEN sub_parent.lft AND sub_parent.rgt AND sub_parent.name = sub_tree.name GROUP BY node.name HAVING depth <= 1 ORDER BY node.lft; +----------------------+-------+ | name | depth | +----------------------+-------+ | PORTABLE ELECTRONICS | 0 | | MP3 PLAYERS | 1 | | CD PLAYERS | 1 | | 2 WAY RADIOS | 1 | +----------------------+-------+ 增加新节点 上面已经介绍了如何检索结果,那么如何才能增加新的节点呢? 如果希望在TELEVISIONS和PROTABLE ELECTRONICS节点之间增加一个新的节点,那么新节点的lft和rgt的值应该是10和11,那么所有大于10的节点(新节点右侧的节点)的lft和rgt都应该加2,如上图所示。 LOCK TABLE nested_category WRITE; SELECT @myRight := rgt FROM nested_category WHERE name = 'TELEVISIONS'; UPDATE nested_category SET rgt = rgt + 2 WHERE rgt > @myRight; UPDATE nested_category SET lft = lft + 2 WHERE lft > @myRight; INSERT INTO nested_category(name, lft, rgt) VALUES('GAME CONSOLES', @myRight + 1, @myRight + 2); UNLOCK TABLES 如果希望在叶子节点下增加节点,需要修改下查询语句, LOCK TABLE nested_category WRITE; SELECT @myLeft := lft FROM nested_category WHERE name = '2 WAY RADIOS'; UPDATE nested_category SET rgt = rgt + 2 WHERE rgt > @myLeft; UPDATE nested_category SET lft = lft + 2 WHERE lft > @myLeft; INSERT INTO nested_category(name, lft, rgt) VALUES('FRS', @myLeft + 1, @myLeft + 2); UNLOCK TABLES;``` ###删除节点 删除叶子节点比较容易,只需要删除自己,而删除一个中间层节点就需要删除其所有子节点。在这个模型中,所有子节点的节点正好在lft和rgt之间。 LOCK TABLE nested_category WRITE; SELECT @myLeft := lft, @myRight := rgt, @myWidth := rgt - lft + 1 FROM nested_category WHERE name = 'GAME CONSOLES'; DELETE FROM nested_category WHERE lft BETWEEN @myLeft AND @myRight; UPDATE nested_category SET rgt = rgt - @myWidth WHERE rgt > @myRight; UPDATE nested_category SET lft = lft - @myWidth WHERE lft > @myRight; UNLOCK TABLES; 在某些情况下,只需要删除某个节点,但是并不希望删除该节点下的子节点数据。 通过把右侧所有节点的左右值-2,当前节点的子节点左右值-1 LOCK TABLE nested_category WRITE; SELECT @myLeft := lft, @myRight := rgt, @myWidth := rgt - lft + 1 FROM nested_category WHERE name = 'PORTABLE ELECTRONICS'; DELETE FROM nested_category WHERE lft = @myLeft; UPDATE nested_category SET rgt = rgt - 1, lft = lft - 1 WHERE lft BETWEEN @myLeft AND @myRight; UPDATE nested_category SET rgt = rgt - 2 WHERE rgt > @myRight; UPDATE nested_category SET lft = lft - 2 WHERE lft > @myRight; UNLOCK TABLES; ``` 最后的思考 原作者推荐了一本名为《Joe Celko's Trees and Hierarchies in SQL for Smarties》的书籍,该书的作者是SQL领域的大神Joe Celko(嵌套几何模型的创造者)。这本书涵盖了本文中未涉及到的一些高级话题。