1. 前言
中文分词≠自然语言处理!
hanlp
hanlp是由一系列模型与算法组成的java工具包,目标是普及自然语言处理在生产环境中的应用。hanlp具备功能完善、性能高效、架构清晰、语料时新、可自定义的特点。
功能:中文分词 词性标注 命名实体识别 依存句法分析 关键词提取新词发现 短语提取 自动摘要 文本分类 拼音简繁
中文分词只是第一步;hanlp从中文分词开始,覆盖词性标注、命名实体识别、句法分析、文本分类等常用任务,提供了丰富的api。
不同于一些简陋的分词类库,hanlp精心优化了内部数据结构和io接口,做到了毫秒级的冷启动、千万字符每秒的处理速度,而内存最低仅需120mb。无论是移动设备还是大型集群,都能获得良好的体验。
不同于市面上的商业工具,hanlp提供训练模块,可以在用户的语料上训练模型并替换默认模型,以适应不同的领域。项目主页上提供了详细的文档,以及在一些开源语料上训练的模型。
hanlp希望兼顾学术界的精准与工业界的效率,在两者之间取一个平衡,真正将自然语言处理普及到生产环境中去。
我们使用的pyhanlp是用python包装了hanlp的java接口。
2. pyhanlp的安装和使用
2.1 python下安装pyhanlp
pip安装
1
|
sudo pip3 install pyhanlp
|
第一次import pyhanlp会下载一个比较大的数据集,需要耐心等待下,后面再import就不会有了。
1
|
from pyhanlp import *
|
详情请见pyhanlp官方文档
2.2 pyhanlp简单使用方法
分词使用
1
2
3
|
from pyhanlp import *
print (hanlp.segment( "今天开心了吗?" ))
>>> [今天 / t, 开心 / a, 了 / ule, 吗 / y, ? / w]
|
依存分析使用
1
2
3
4
5
6
7
|
from pyhanlp import *
print (hanlp.parsedependency( "今天开心了吗?" ))
>>> 1 今天 今天 nt t _ 2 状中结构 _ _
>>> 2 开心 开心 a a _ 0 核心关系 _ _
>>> 3 了 了 e y _ 2 右附加关系 _ _
>>> 4 吗 吗 e y _ 2 右附加关系 _ _
>>> 5 ? ? wp w _ 2 标点符号 _ _
|
2.3 pyhanlp可视化
如果大家看不太清楚上面的输出,pyhanlp提供了一个很好的展示交付界面,只要一句命令就能启动一个web服务
1
|
hanlp serve
|
登录http://localhost:8765就能看下可视化界面,能看到分词结果和依存关系的结果,是不是很直观。这个网页上还有安装说明、源码链接、文档链接、常见的问题(faq)。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:https://www.cnblogs.com/huangyc/p/10279247.html