向量点乘 (dot) 和对应分量相乘 (multiply) :
1
2
3
4
5
6
7
8
|
>>> a
array([ 1 , 2 , 3 ])
>>> b
array([ 1. , 1. , 1. ])
>>> np.multiply(a,b)
array([ 1. , 2. , 3. ])
>>> np.dot(a,b)
6.0
|
矩阵乘法 (dot) 和对应分量相乘 (multiply) :
1
2
3
4
5
6
7
8
9
10
|
>>> c
matrix([[ 1 , 2 , 3 ]])
>>> d
matrix([[ 1. , 1. , 1. ]])
>>> np.multiply(c,d)
matrix([[ 1. , 2. , 3. ]])
>>> np.dot(c,d)
Traceback (most recent call last):
File "<stdin>" , line 1 , in <module>
ValueError: shapes ( 1 , 3 ) and ( 1 , 3 ) not aligned: 3 (dim 1 ) ! = 1 (dim 0 )
|
写代码过程中,*表示对应分量相乘 (multiply) :
1
2
3
4
5
6
7
8
|
>>> a * b
array([ 1. , 2. , 3. ])
>>> c * d
Traceback (most recent call last):
File "<stdin>" , line 1 , in <module>
File "C:\ProgramData\Anaconda3\lib\site-packages\numpy\matrixlib\defmatrix.py" , line 343 , in __mul__
return N.dot( self , asmatrix(other))
ValueError: shapes ( 1 , 3 ) and ( 1 , 3 ) not aligned: 3 (dim 1 ) ! = 1 (dim 0 )
|
以上这篇对python中的乘法dot和对应分量相乘multiply详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/ztf312/article/details/76222233