1. 题目描述
一个长度为n个队列,每次取队头的4个人玩儿游戏,每个人等概率赢得比赛。胜者任然处在队头,然而败者按照原顺序依次排在队尾。连续赢得m场比赛的玩家赢得最终胜利。
求第k个人赢得最终胜利的概率。
2. 基本思路
显然是个概率DP,dp[i][j]表示第1个玩家已经连续赢得i局比赛时,第j个人赢得最终胜利的概率。所求极为dp[0][k]。
\[
dp[m][j] = \begin{cases}
\begin{aligned}
&1, j=1 \\
&0, j>1
\end{aligned}
\end{cases}
\]
$dp[i][j] =$
\[
\quad \left\{ \begin{aligned}
&\frac{1}{4}dp[i+1][j] + \frac{3}{4}dp[1][n-2], &j=1 \\
&\frac{1}{4}dp[i+1][n-2] + \frac{1}{4}dp[1][1] + \frac{2}{4}dp[1][n-1], &j=2 \\
&\frac{1}{4}dp[i+1][n-3] + \frac{1}{4}dp[1][n-1] + \frac{1}{4}dp[1][1] + \frac{1}{4}dp[1][n], &j=3 \\
&\frac{1}{4}dp[i+1][n] + \frac{2}{4}dp[1][n] + \frac{1}{4}dp[1][1], &j=4 \\
&\frac{3}{4}dp[1][j-3] + \frac{1}{4}dp[i+1][j-3], &j>4
\end{aligned}
\right .
\]
因为找不到一个有效的常量,因此考虑解n*m元方程组。方法是高斯消元。
3. 代码
/* 4326 */
#include <iostream>
#include <sstream>
#include <string>
#include <map>
#include <queue>
#include <set>
#include <stack>
#include <vector>
#include <deque>
#include <bitset>
#include <algorithm>
#include <cstdio>
#include <cmath>
#include <ctime>
#include <cstring>
#include <climits>
#include <cctype>
#include <cassert>
#include <functional>
#include <iterator>
#include <iomanip>
using namespace std;
//#pragma comment(linker,"/STACK:102400000,1024000") #define sti set<int>
#define stpii set<pair<int, int> >
#define mpii map<int,int>
#define vi vector<int>
#define pii pair<int,int>
#define vpii vector<pair<int,int> >
#define rep(i, a, n) for (int i=a;i<n;++i)
#define per(i, a, n) for (int i=n-1;i>=a;--i)
#define clr clear
#define pb push_back
#define mp make_pair
#define fir first
#define sec second
#define all(x) (x).begin(),(x).end()
#define SZ(x) ((int)(x).size())
#define lson l, mid, rt<<1
#define rson mid+1, r, rt<<1|1 const int maxn = ;
const double eps = 1e-;
typedef double mat[maxn][maxn];
double x[maxn];
mat g;
int n, m, k; void gauss_elimination(mat& g, int n) {
int r; rep(i, , n) {
r = i;
rep(j, i+, n) {
if (fabs(g[j][i]) > fabs(g[r][i]))
r = j;
}
if (r != i) {
rep(j, , n+)
swap(g[r][j], g[i][j]);
} rep(k, i+, n) {
if (fabs(g[i][i]) < eps)
continue;
double f = g[k][i] / g[i][i];
rep(j, i, n+)
g[k][j] -= f * g[i][j];
}
} per(i, , n) {
rep(j, i+, n)
g[i][n] -= g[j][n] * g[i][j];
g[i][n] /= g[i][i];
}
} void add(int ridx, int i, int j, double val) {
if (i == m) {
if (j == )
g[ridx][i*n+j-] -= val;
return ;
} g[ridx][i*n+j-] += val;
} void solve() {
int idx = ; memset(g, , sizeof(g)); rep(i, , m) {
rep(j, , n+) {
add(idx, i, j, 1.0);
if (j == ) {
add(idx, i+, j, -0.25);
add(idx, , n-, -0.75);
} else if (j == ) {
add(idx, i+, n-, -0.25);
add(idx, , , -0.25);
add(idx, , n-, -0.5);
} else if (j == ) {
add(idx, i+, n-, -0.25);
add(idx, , n-, -0.25);
add(idx, , , -0.25);
add(idx, , n, -0.25);
} else if (j == ) {
add(idx, i+, n, -0.25);
add(idx, , n, -0.5);
add(idx, , , -0.25);
} else {
add(idx, , j-, -0.75);
add(idx, i+, j-, -0.25);
}
++idx;
}
} gauss_elimination(g, idx);
double ans = g[k-][idx];
printf("%.6lf\n", ans);
} int main() {
ios::sync_with_stdio(false);
#ifndef ONLINE_JUDGE
freopen("data.in", "r", stdin);
freopen("data.out", "w", stdout);
#endif int t; scanf("%d", &t);
rep(tt, , t+) {
scanf("%d%d%d", &n, &m, &k);
printf("Case #%d: ", tt);
solve();
} #ifndef ONLINE_JUDGE
printf("time = %d.\n", (int)clock());
#endif return ;
}
【HDOJ】4326 Game的更多相关文章
-
【HDOJ】4729 An Easy Problem for Elfness
其实是求树上的路径间的数据第K大的题目.果断主席树 + LCA.初始流量是这条路径上的最小值.若a<=b,显然直接为s->t建立pipe可以使流量最优:否则,对[0, 10**4]二分得到 ...
-
【HDOJ】【3506】Monkey Party
DP/四边形不等式 裸题环形石子合并…… 拆环为链即可 //HDOJ 3506 #include<cmath> #include<vector> #include<cst ...
-
【HDOJ】【3516】Tree Construction
DP/四边形不等式 这题跟石子合并有点像…… dp[i][j]为将第 i 个点开始的 j 个点合并的最小代价. 易知有 dp[i][j]=min{dp[i][j] , dp[i][k-i+1]+dp[ ...
-
【HDOJ】【3480】Division
DP/四边形不等式 要求将一个可重集S分成M个子集,求子集的极差的平方和最小是多少…… 首先我们先将这N个数排序,容易想到每个自己都对应着这个有序数组中的一段……而不会是互相穿插着= =因为交换一下明 ...
-
【HDOJ】【2829】Lawrence
DP/四边形不等式 做过POJ 1739 邮局那道题后就很容易写出动规方程: dp[i][j]=min{dp[i-1][k]+w[k+1][j]}(表示前 j 个点分成 i 块的最小代价) $w(l, ...
-
【HDOJ】【3415】Max Sum of Max-K-sub-sequence
DP/单调队列优化 呃……环形链求最大k子段和. 首先拆环为链求前缀和…… 然后单调队列吧<_<,裸题没啥好说的…… WA:为毛手写队列就会挂,必须用STL的deque?(写挂自己弱……s ...
-
【HDOJ】【3530】Subsequence
DP/单调队列优化 题解:http://www.cnblogs.com/yymore/archive/2011/06/22/2087553.html 引用: 首先我们要明确几件事情 1.假设我们现在知 ...
-
【HDOJ】【3068】最长回文
Manacher算法 Manacher模板题…… //HDOJ 3068 #include<cstdio> #include<cstring> #include<cstd ...
-
【HDOJ】【1512】Monkey King
数据结构/可并堆 啊……换换脑子就看了看数据结构……看了一下左偏树和斜堆,鉴于左偏树不像斜堆可能退化就写了个左偏树. 左偏树介绍:http://www.cnblogs.com/crazyac/arti ...
随机推荐
-
Linux进程管理知识整理
Linux进程管理知识整理 1.进程有哪些状态?什么是进程的可中断等待状态?进程退出后为什么要等待调度器删除其task_struct结构?进程的退出状态有哪些? TASK_RUNNING(可运行状态) ...
-
sqlserver 字符串相关函数
http://www.cnblogs.com/jiajiayuan/archive/2011/06/16/2082488.html 以下所有例子均Studnet表为例: 计算字符串长度len()用来 ...
-
node.js使用express框架进行文件上传
关于node.js使用express框架进行文件上传,主要来自于最近对Settings-Sync插件做的研究.目前的研究算是取得的比较好的进展.Settings-Sync中通过快捷键上传文件,其实主要 ...
-
storm+Calcite
敬请期待... http://blog.csdn.net/yu616568/article/details/49915577 https://github.com/terry-chelsea/bigd ...
-
mysql 5.7 ~ 新特性
mysql 5.7特性 简介:mysql 5.7内存和线程性能方面的优化一 细节优化 参数: 1 innodb_buffer_pool 改进 innodb_buffer_pool可以动态扩大, ...
-
Python pycharm 常用快捷键
快捷键 1.编辑(Editing) Ctrl + Space 基本的代码完成(类.方法.属性) Ctrl + Alt + Space 快速导入任意类 Ctrl + Shift + Enter 语句完成 ...
-
spring上下文快速获取方法
import org.springframework.beans.BeansException;import org.springframework.context.ApplicationContex ...
-
GNU Radio: 射频子板
本文简要介绍 USRP 配套的子板参数信息. 射频子板WBX-40 性能特点 频率覆盖:50 MHz – 2.2GHz 最大信号处理带宽:40MHz 行为描述 WBX-40提供高宽带收发器,可提供高达 ...
-
与FPGA相关的独热码
独热码在状态机里面使用比价广泛,这一块有些人爱用,有些人嫌烦,有时候可以用用格雷码跳转,不过格雷码只支持那种一步到底的,中间有分支就不好做了,所以后来还是回到了独热码的正道上. 说白了独热码的使用,在 ...
-
[javaEE] EL表达式获取数据
jsp标签: <jsp:include> <jsp:forward> 实现请求转发 <jsp:param> 给上面的添加参数的 EL表达式: 1.获取变量数据 &l ...