Scrapy实战篇(一)之爬取链家网成交房源数据(上)

时间:2022-09-07 18:47:00

今天,我们就以链家网南京地区为例,来学习爬取链家网的成交房源数据。

这里推荐使用火狐浏览器,并且安装firebug和firepath两款插件,你会发现,这两款插件会给我们后续的数据提取带来很大的方便。

首先创建一个名称为lianjia的项目。

需求分析

爬取数据的第一步当然是确定我们的需求,大方向就是我们想拿到南京地区的房源成交信息,但是具体的细节信息,我们需要从网页来看,,我们直接在浏览器中输入以下的网址https://nj.lianjia.com/chengjiao/,会显示南京地区的成交的房源信息,包括名称,房屋简介,地理位置,成交日期,成交价格,成交单价等详细信息,这样我们就确定了我们想要的信息,我们在items.py文件中定义如下的一些字段。

#items.py
from scrapy import Item,Field class LianjiaItem(Item):
region = Field() #行政区域
href = Field() #房源链接
name = Field() #房源名称
style = Field() #房源结构
area = Field() #小区
orientation = Field() #朝向
decoration = Field() #装修
elevator = Field() #电梯
floor = Field() #楼层高度
build_year = Field() #建造时间
sign_time = Field() #签约时间
unit_price = Field() #每平米单价
total_price = Field() #总价
fangchan_class = Field() #房产类型
school = Field() #周边学校
subway = Field() #周边地铁

请注意,以上的信息,并不是每一套房源都有的,比如下面的地铁,学校,很多房源都是没有的。

问题

  • 你会发现一个问题,每一个页面会呈现30条的房源信息,最下面一共可以显示100页,总计最多也就是3000条信息,南京地区的成交房源信息肯定不止这区区的3000条,那么如果直接从这个页面通过翻页来获取数据,最多只能获取到3000条信息,所以我们这里需要转思路。

  • 还是这个页面,可以看到页面上部列出了南京地区的行政区,我们随意选择一个,会发现,新的页面依然是每一页30条,共计100页,但是我们有11个行政区,那么其数量也是翻了好几倍了。

  • 这个时候,你可能还是不满足,我们想办法看一下是不是还可以进一步向下划分,没错那就是小区,我们把房源从11个行政区划分到小区上,以小区为单位,每一个小区上面还有房源数据,这样的话,我们的信息可以说比较全面了,当然了,我们需要做的工作也是要翻倍的。

总结

这里我们通过分析,总结出了如下的思路:

  • 以行政区为单位,先获取南京地区所有的小区信息
  • 以小区为单位,获取每一个小区里面的房源数据
  • 最后就是获取具体的每一个房源的信息。

具体实施

现在明确了我们的思路,下面就开始具体的实施。

编写spider.py文件

from scrapy import Spider,Request
import re
from lxml import etree
import json
from urllib.parse import quote
from lianjia.items import LianjiaItem class Lianjia_spider(Spider):
name = 'lianjia'
allowed_domains = ['nj.lianjia.com']
regions = {'gulou':'鼓楼',
'jianye':'建邺',
'qinhuai':'秦淮',
'xuanwu':'玄武',
'yuhuatai':'雨花台',
'qixia':'栖霞',
'jiangning':'江宁',
'liuhe':'六合',
'pukou':'浦口',
'lishui':'涟水',
'gaochun':'高淳'
} def start_requests(self):
for region in list(self.regions.keys()):
url = "https://nj.lianjia.com/xiaoqu/" + region + "/"
yield Request(url=url, callback=self.parse, meta={'region':region}) #用来获取页码 def parse(self, response):
region = response.meta['region']
selector = etree.HTML(response.text)
sel = selector.xpath("//div[@class='page-box house-lst-page-box']/@page-data")[0] # 返回的是字符串字典
sel = json.loads(sel) # 转化为字典
total_pages = sel.get("totalPage") for i in range(int(total_pages)):
url_page = "https://nj.lianjia.com/xiaoqu/{}/pg{}/".format(region, str(i + 1))
yield Request(url=url_page, callback=self.parse_xiaoqu, meta={'region':region}) def parse_xiaoqu(self,response):
selector = etree.HTML(response.text)
xiaoqu_list = selector.xpath('//ul[@class="listContent"]//li//div[@class="title"]/a/text()')
for xq_name in xiaoqu_list:
url = "https://nj.lianjia.com/chengjiao/rs" + quote(xq_name) + "/"
yield Request(url=url, callback=self.parse_chengjiao, meta={'xq_name':xq_name,
'region':response.meta['region']}) def parse_chengjiao(self,response):
xq_name = response.meta['xq_name']
selector = etree.HTML(response.text)
content = selector.xpath("//div[@class='page-box house-lst-page-box']") #有可能为空
total_pages = 0
if len(content):
page_data = json.loads(content[0].xpath('./@page-data')[0])
total_pages = page_data.get("totalPage") # 获取总的页面数量
for i in range(int(total_pages)):
url_page = "https://nj.lianjia.com/chengjiao/pg{}rs{}/".format(str(i+1), quote(xq_name))
yield Request(url=url_page, callback=self.parse_content, meta={'region': response.meta['region']}) def parse_content(self,response):
selector = etree.HTML(response.text)
cj_list = selector.xpath("//ul[@class='listContent']/li") for cj in cj_list:
item = LianjiaItem()
item['region'] = self.regions.get(response.meta['region'])
href = cj.xpath('./a/@href')
if not len(href):
continue
item['href'] = href[0] content = cj.xpath('.//div[@class="title"]/a/text()')
if len(content):
content = content[0].split() # 按照空格分割成一个列表
item['name'] = content[0]
item['style'] = content[1]
item['area'] = content[2] content = cj.xpath('.//div[@class="houseInfo"]/text()')
if len(content):
content = content[0].split('|')
item['orientation'] = content[0]
item['decoration'] = content[1]
if len(content) == 3:
item['elevator'] = content[2]
else:
item['elevator'] = '无' content = cj.xpath('.//div[@class="positionInfo"]/text()')
if len(content):
content = content[0].split()
item['floor'] = content[0]
if len(content) == 2:
item['build_year'] = content[1]
else:
item['build_year'] = '无' content = cj.xpath('.//div[@class="dealDate"]/text()')
if len(content):
item['sign_time'] = content[0] content = cj.xpath('.//div[@class="totalPrice"]/span/text()')
if len(content):
item['total_price'] = content[0] content = cj.xpath('.//div[@class="unitPrice"]/span/text()')
if len(content):
item['unit_price'] = content[0] content = cj.xpath('.//span[@class="dealHouseTxt"]/span/text()')
if len(content):
for i in content:
if i.find("房屋满") != -1: # 找到了返回的是非-1得数,找不到的返回的是-1
item['fangchan_class'] = i
elif i.find("号线") != -1:
item['subway'] = i
elif i.find("学") != -1:
item['school'] = i
yield item

我们对上面关键的地方进行解释:

  • start_requests
    这个就是我们以行政区为单位,目的是爬取每一个行政区的小区列表。
  • parse
    对行政区返回的response进行解析,我们目的是拿到这个大的行政区,包含多少个页面,其中的
    total_pages就是具体的页面数,接下来就是按照页码请求每一个页面。
  • parse_xiaoqu
    上面返回了每一个页面的信息,这个时候我们就把当前页面的小区列表拿到,而后,在针对小区列表,每一个小区进行一次请求。
  • parse_chengjiao
    解析小区的页面数,上面说到了,我们请求了每一个小区数据,这个小区肯定不止包含一页的数据,那么我们这个方法就是将这个小区包含的页面数抽取出来,而后针对每一个页面进行请求
  • parse_content
    这个方法就是解析具体的页面了,可以看到,这个方法里面包含了非常多的条件判断,这是因为,我们之前定义的item字段里面的信息,并不是每一个小区都有的,就是说,我们要的信息他不是一个规规矩矩的信息,很多的房源没有提供相关的信息,比如地铁,周边学校等等的信息,我们这里就是如果有这个信息,我们就把它提取出来,如果没有的话,我们就给他自定义一个内容
    。最后将item提交给item pipeline进行后续的处理。

由于这一节的信息比较多,我们就把它分为两个小节,在下一节中,我们对拿到的数据进行后续的处理。

Scrapy实战篇(一)之爬取链家网成交房源数据(上)的更多相关文章

  1. Scrapy实战篇(二)之爬取链家网成交房源数据(下)

    在上一小节中,我们已经提取到了房源的具体信息,这一节中,我们主要是对提取到的数据进行后续的处理,以及进行相关的设置. 数据处理 我们这里以把数据存储到mongo数据库为例.编写pipelines.py ...

  2. Scrapy实战篇(九)之爬取链家网天津租房数据

    以后有可能会在天津租房子,所以想将链家网上面天津的租房数据抓下来,以供分析使用. 思路: 1.以初始链接https://tj.lianjia.com/zufang/rt200600000001/?sh ...

  3. Python——Scrapy爬取链家网站所有房源信息

    用scrapy爬取链家全国以上房源分类的信息: 路径: items.py # -*- coding: utf-8 -*- # Define here the models for your scrap ...

  4. Python的scrapy之爬取链家网房价信息并保存到本地

    因为有在北京租房的打算,于是上网浏览了一下链家网站的房价,想将他们爬取下来,并保存到本地. 先看链家网的源码..房价信息 都保存在 ul 下的li 里面 ​ 爬虫结构: ​ 其中封装了一个数据库处理模 ...

  5. 适合初学者的Python爬取链家网教程

    前言 文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. 作者: TinaLY PS:如有需要Python学习资料的小伙伴可以加点击下 ...

  6. 爬取链家网租房图 使用ImagesPipeline保存图片

    # 爬虫文件 # -*- coding: utf-8 -*- import scrapy import os from urllib import request from lianjia.items ...

  7. python - 爬虫入门练习 爬取链家网二手房信息

    import requests from bs4 import BeautifulSoup import sqlite3 conn = sqlite3.connect("test.db&qu ...

  8. Python爬虫项目--爬取链家热门城市新房

    本次实战是利用爬虫爬取链家的新房(声明: 内容仅用于学习交流, 请勿用作商业用途) 环境 win8, python 3.7, pycharm 正文 1. 目标网站分析 通过分析, 找出相关url, 确 ...

  9. Python爬取链家二手房源信息

    爬取链家网站二手房房源信息,第一次做,仅供参考,要用scrapy.   import scrapy,pypinyin,requests import bs4 from ..items import L ...

随机推荐

  1. DP:Dollar Dayz(POJ 3181)

    一道高精度DP 题目大意,换工具,有m块钱,有k种价值的物品,(1...k),求一共有多少种换法 这一题就是完全背包,现在这种完全背包对我来说就是水题了, 状态转移方程闭着眼睛写dp[j]+=dp[j ...

  2. Red Hat Enterprise Linux 6安装步骤

    首先,准备安装环境,此次实验是在VMware Workstation虚拟机环境下来实现的,下面就开始安装: 点击Create a New Vitrual Machine来新建一个虚拟机,选择自定义安装 ...

  3. C++_01_入门

    一.类的定义 Person.h类声明 Person.cpp类实现 main.cpp主函数 二.命名空间的使用 watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv ...

  4. mysql--学生课程成绩表

    创建表student: CREATE TABLE `student` ( `sid` INT(11) NOT NULL AUTO_INCREMENT, `sname` VARCHAR(20) NOT ...

  5. docker 9 docker的容器命令

    有镜像才能创建容器,这是根本的前提 下面我们以下载一个centos镜像来做演示. [root@t-docker chenzx]# docker images REPOSITORY TAG IMAGE ...

  6. Python——Message控件

    一.messagebox的方法: showerror   : 错误提示对话框 showinfo  :  信息提示对话框 showwarning   : 警告对话框 askokcansel   :确认或 ...

  7. iphone6/6+ 适配心得

    1.     文档综述 自iphone6/6+发布,ios屏幕分辨率的种类一下从2种变成了四种.对于以前很多手写UI,并且使用绝对坐标的UI,可能会发生异变,本文主要介绍在纯手写UI条件下,ios应用 ...

  8. Java/JDK安装教程手册(正规图文全流程)、运行、环境配置

    Java/JDK教程手册 本文提供全流程,中文翻译.Chinar坚持将简单的生活方式,带给世人!(拥有更好的阅读体验 -- 高分辨率用户请根据需求调整网页缩放比例) 一 Download Resouc ...

  9. Django:如何给文章列表添加图片

    思路: 使用ajax方式将图片和文本一起通过formData提交到后台,Django后台通过request.POST和request.FILES方式接收数据 1.前端代码 {% extends 'ba ...

  10. Node.js学习笔记(七) --- Node.js的静态文件托管、路 由、EJS 模板引擎、GET 、POST

    1 . Nodejs 静态文件托管静态 web 服务器封装 2 . 路由 官方解释:  路由(Routing)是由一个 URI(或者叫路径)和一个特定的 HTTP 方法(GET.POST 等)组成的, ...