I have recently come across an interesting question on strings. Suppose you are given following:
我最近遇到了一个关于字符串的有趣问题。假设你有下列情况:
Input string1: "this is a test string"
Input string2: "tist"
Output string: "t stri"
So, given above, how can I approach towards finding smallest substring of string1 that contains all the characters from string 2?
因此,在上面给出的情况下,如何找到包含字符串2中所有字符的最小的string1子字符串?
12 个解决方案
#1
31
You can do a histogram sweep in O(N+M)
time and O(1)
space where N
is the number of characters in the first string and M
is the number of characters in the second.
你可以在O(N+M)时间和O(1)空间中进行直方图扫描,其中N为第一个字符串中的字符数,M是第二个字符的数目。
It works like this:
是这样的:
- Make a histogram of the second string's characters (key operation is
hist2[ s2[i] ]++
). - 生成第二个字符串字符的直方图(关键操作是hist2[i] ++)。
- Make a cumulative histogram of the first string's characters until that histogram contains every character that the second string's histogram contains (which I will call "the histogram condition").
- 对第一个字符串的字符进行累计直方图,直到直方图包含第二个字符串的直方图所包含的每个字符(我将其称为“直方图条件”)。
- Then move forwards on the first string, subtracting from the histogram, until it fails to meet the histogram condition. Mark that bit of the first string (before the final move) as your tentative substring.
- 然后向前移动第一个字符串,从直方图中减去,直到它不能满足直方图条件。将第一个字符串的比特(在最后一个移动之前)标记为您的临时子字符串。
- Move the front of the substring forwards again until you meet the histogram condition again. Move the end forwards until it fails again. If this is a shorter substring than the first, mark that as your tentative substring.
- 再次移动子串的前面,直到再次遇到直方图状态。将末端向前移动,直到它再次失败。如果这是一个比第一个更短的子字符串,那么将它标记为您的暂定子字符串。
- Repeat until you've passed through the entire first string.
- 重复,直到你穿过了整个第一个字符串。
- The marked substring is your answer.
- 标记的子字符串是您的答案。
Note that by varying the check you use on the histogram condition, you can choose either to have the same set of characters as the second string, or at least as many characters of each type. (Its just the difference between a[i]>0 && b[i]>0
and a[i]>=b[i]
.)
注意,通过改变您在直方图条件下使用的检查,您可以选择使用相同的字符集作为第二个字符串,或者至少是每种类型的字符。(这只是>和b[i]>0和a[i]>=b[i]的区别。)
You can speed up the histogram checks if you keep a track of which condition is not satisfied when you're trying to satisfy it, and checking only the thing that you decrement when you're trying to break it. (On the initial buildup, you count how many items you've satisfied, and increment that count every time you add a new character that takes the condition from false to true.)
你可以加速直方图检查,如果你在试着满足它的情况下,保持一个不满足的状态,并且只检查在你试图打破它的时候你所减少的东西。(在初始的构建过程中,您可以计算您已经满足了多少项,并在每次添加一个新字符时,将该条件从false改为true。)
#2
37
To see more details including working code, check my blog post at:
要查看更多细节,包括工作代码,请查看我的博客文章:
http://www.leetcode.com/2010/11/finding-minimum-window-in-s-which.html
http://www.leetcode.com/2010/11/finding-minimum-window-in-s-which.html
To help illustrate this approach, I use an example: string1 = "acbbaca"
and string2 = "aba"
. Here, we also use the term "window", which means a contiguous block of characters from string1 (could be interchanged with the term substring).
为了说明这种方法,我使用了一个示例:string1 = "acbbaca"和string2 = "aba"。在这里,我们还使用术语“窗口”,这意味着string1中的一个连续的字符块(可以与术语substring互换)。
i) string1 = "acbbaca" and string2 = "aba".
i) string1 = "acbbaca"和string2 = "aba"。
ii) The first minimum window is found. Notice that we cannot advance begin pointer as hasFound['a'] == needToFind['a'] == 2. Advancing would mean breaking the constraint.
2)发现第一个最小窗口。请注意,我们不能像hasFound['a'] == = 2那样提前开始指针。前进意味着打破约束。
iii) The second window is found. begin pointer still points to the first element 'a'. hasFound['a'] (3) is greater than needToFind['a'] (2). We decrement hasFound['a'] by one and advance begin pointer to the right.
第三,找到第二个窗口。开始指针仍然指向第一个元素'a'。发现['a'](3)大于需要找到['a'](2)。我们减少了一个,并提前开始指向右边的指针。
iv) We skip 'c' since it is not found in string2. Begin pointer now points to 'b'. hasFound['b'] (2) is greater than needToFind['b'] (1). We decrement hasFound['b'] by one and advance begin pointer to the right.
4)我们跳过c,因为它在string2中没有找到。现在开始指针指向“b”。发现['b'](2)比需要找到['b'](1)更大。我们减少了一个['b'],并且提前开始指向正确的指针。
v) Begin pointer now points to the next 'b'. hasFound['b'] (1) is equal to needToFind['b'] (1). We stop immediately and this is our newly found minimum window.
开始指针指向下一个'b'。发现['b'](1)等于需要找到['b'](1)。我们立即停止,这是我们新发现的最小窗口。
The idea is mainly based on the help of two pointers (begin and end position of the window) and two tables (needToFind and hasFound) while traversing string1. needToFind stores the total count of a character in string2 and hasFound stores the total count of a character met so far. We also use a count variable to store the total characters in string2 that's met so far (not counting characters where hasFound[x] exceeds needToFind[x]). When count equals string2's length, we know a valid window is found.
这个想法主要基于两个指针的帮助(窗口的开始和结束位置)和两个表(需要查找和hasFound),同时遍历string1。needToFind存储string2中一个字符的总数,并且已经找到了一个字符的总数。我们还使用count变量来存储到目前为止遇到的string2中的全部字符(不包括已经发现[x]超出需要的字符[x])。当count等于string2的长度时,我们知道一个有效的窗口被找到。
Each time we advance the end pointer (pointing to an element x), we increment hasFound[x] by one. We also increment count by one if hasFound[x] is less than or equal to needToFind[x]. Why? When the constraint is met (that is, count equals to string2's size), we immediately advance begin pointer as far right as possible while maintaining the constraint.
每次我们向前进结束指针(指向一个元素x),我们就会增加一个。如果发现[x]小于或等于需要查找[x],我们也会增加一个。为什么?当满足约束时(即count等于string2的大小),我们会在保持约束的同时,立即将开始指针尽可能地向前推进。
How do we check if it is maintaining the constraint? Assume that begin points to an element x, we check if hasFound[x] is greater than needToFind[x]. If it is, we can decrement hasFound[x] by one and advancing begin pointer without breaking the constraint. On the other hand, if it is not, we stop immediately as advancing begin pointer breaks the window constraint.
我们如何检查它是否保持约束?假设开始指向一个元素x,我们检查是否发现[x]大于需要查找[x]。如果是的话,我们可以通过一个和一个前进的开始指针,而不打破约束。另一方面,如果不是,我们立即停止,因为前进的指针打破了窗口的限制。
Finally, we check if the minimum window length is less than the current minimum. Update the current minimum if a new minimum is found.
最后,我们检查最小窗口长度是否小于当前最小值。如果发现新的最小值,则更新当前最小值。
Essentially, the algorithm finds the first window that satisfies the constraint, then continue maintaining the constraint throughout.
基本上,算法找到满足约束的第一个窗口,然后继续保持约束。
#3
6
Here's an O(n) solution. The basic idea is simple: for each starting index, find the least ending index such that the substring contains all of the necessary letters. The trick is that the least ending index increases over the course of the function, so with a little data structure support, we consider each character at most twice.
这是一个O(n)的解决方案。基本思想很简单:对于每个起始索引,找到最小的结束索引,这样子字符串包含所有必要的字母。诀窍在于,最小的结束索引在函数的过程中增加,因此在少量的数据结构支持下,我们最多考虑每个字符两次。
In Python:
在Python中:
from collections import defaultdict
def smallest(s1, s2):
assert s2 != ''
d = defaultdict(int)
nneg = [0] # number of negative entries in d
def incr(c):
d[c] += 1
if d[c] == 0:
nneg[0] -= 1
def decr(c):
if d[c] == 0:
nneg[0] += 1
d[c] -= 1
for c in s2:
decr(c)
minlen = len(s1) + 1
j = 0
for i in xrange(len(s1)):
while nneg[0] > 0:
if j >= len(s1):
return minlen
incr(s1[j])
j += 1
minlen = min(minlen, j - i)
decr(s1[i])
return minlen
#4
2
I received the same interview question. I am a C++ candidate but I was in a position to code relatively fast in JAVA.
我收到了同样的面试问题。我是一个c++的候选人,但是我在JAVA中代码相对较快。
Java [Courtesy : Sumod Mathilakath]
Java[礼貌:Sumod Mathilakath]
import java.io.*;
import java.util.*;
class UserMainCode
{
public String GetSubString(String input1,String input2){
// Write code here...
return find(input1, input2);
}
private static boolean containsPatternChar(int[] sCount, int[] pCount) {
for(int i=0;i<256;i++) {
if(pCount[i]>sCount[i])
return false;
}
return true;
}
public static String find(String s, String p) {
if (p.length() > s.length())
return null;
int[] pCount = new int[256];
int[] sCount = new int[256];
// Time: O(p.lenght)
for(int i=0;i<p.length();i++) {
pCount[(int)(p.charAt(i))]++;
sCount[(int)(s.charAt(i))]++;
}
int i = 0, j = p.length(), min = Integer.MAX_VALUE;
String res = null;
// Time: O(s.lenght)
while (j < s.length()) {
if (containsPatternChar(sCount, pCount)) {
if ((j - i) < min) {
min = j - i;
res = s.substring(i, j);
// This is the smallest possible substring.
if(min==p.length())
break;
// Reduce the window size.
sCount[(int)(s.charAt(i))]--;
i++;
}
} else {
sCount[(int)(s.charAt(j))]++;
// Increase the window size.
j++;
}
}
System.out.println(res);
return res;
}
}
C++ [Courtesy : sundeepblue]
c++(礼貌sundeepblue):
#include <iostream>
#include <vector>
#include <string>
#include <climits>
using namespace std;
string find_minimum_window(string s, string t) {
if(s.empty() || t.empty()) return;
int ns = s.size(), nt = t.size();
vector<int> total(256, 0);
vector<int> sofar(256, 0);
for(int i=0; i<nt; i++)
total[t[i]]++;
int L = 0, R;
int minL = 0; //gist2
int count = 0;
int min_win_len = INT_MAX;
for(R=0; R<ns; R++) { // gist0, a big for loop
if(total[s[R]] == 0) continue;
else sofar[s[R]]++;
if(sofar[s[R]] <= total[s[R]]) // gist1, <= not <
count++;
if(count == nt) { // POS1
while(true) {
char c = s[L];
if(total[c] == 0) { L++; }
else if(sofar[c] > total[c]) {
sofar[c]--;
L++;
}
else break;
}
if(R - L + 1 < min_win_len) { // this judge should be inside POS1
min_win_len = R - L + 1;
minL = L;
}
}
}
string res;
if(count == nt) // gist3, cannot forget this.
res = s.substr(minL, min_win_len); // gist4, start from "minL" not "L"
return res;
}
int main() {
string s = "abdccdedca";
cout << find_minimum_window(s, "acd");
}
Erlang [Courtesy : wardbekker]
Erlang(礼貌wardbekker):
-module(leetcode).
-export([min_window/0]).
%% Given a string S and a string T, find the minimum window in S which will contain all the characters in T in complexity O(n).
%% For example,
%% S = "ADOBECODEBANC"
%% T = "ABC"
%% Minimum window is "BANC".
%% Note:
%% If there is no such window in S that covers all characters in T, return the emtpy string "".
%% If there are multiple such windows, you are guaranteed that there will always be only one unique minimum window in S.
min_window() ->
"eca" = min_window("cabeca", "cae"),
"eca" = min_window("cfabeca", "cae"),
"aec" = min_window("cabefgecdaecf", "cae"),
"cwae" = min_window("cabwefgewcwaefcf", "cae"),
"BANC" = min_window("ADOBECODEBANC", "ABC"),
ok.
min_window(T, S) ->
min_window(T, S, []).
min_window([], _T, MinWindow) ->
MinWindow;
min_window([H | Rest], T, MinWindow) ->
NewMinWindow = case lists:member(H, T) of
true ->
MinWindowFound = fullfill_window(Rest, lists:delete(H, T), [H]),
case length(MinWindow) == 0 orelse (length(MinWindow) > length(MinWindowFound)
andalso length(MinWindowFound) > 0) of
true ->
MinWindowFound;
false ->
MinWindow
end;
false ->
MinWindow
end,
min_window(Rest, T, NewMinWindow).
fullfill_window(_, [], Acc) ->
%% window completed
Acc;
fullfill_window([], _T, _Acc) ->
%% no window found
"";
fullfill_window([H | Rest], T, Acc) ->
%% completing window
case lists:member(H, T) of
true ->
fullfill_window(Rest, lists:delete(H, T), Acc ++ [H]);
false ->
fullfill_window(Rest, T, Acc ++ [H])
end.
REF:
裁判:
- http://articles.leetcode.com/finding-minimum-window-in-s-which/#comment-511216
- http://articles.leetcode.com/finding-minimum-window-in-s-which/评论- 511216
- http://www.mif.vu.lt/~valdas/ALGORITMAI/LITERATURA/Cormen/Cormen.pdf
- http://www.mif.vu.lt/有/ ALGORITMAI LITERATURA /科尔曼/ Cormen.pdf
#5
1
Please have a look at this as well:
请看看这个:
//-----------------------------------------------------------------------
bool IsInSet(char ch, char* cSet)
{
char* cSetptr = cSet;
int index = 0;
while (*(cSet+ index) != '\0')
{
if(ch == *(cSet+ index))
{
return true;
}
++index;
}
return false;
}
void removeChar(char ch, char* cSet)
{
bool bShift = false;
int index = 0;
while (*(cSet + index) != '\0')
{
if( (ch == *(cSet + index)) || bShift)
{
*(cSet + index) = *(cSet + index + 1);
bShift = true;
}
++index;
}
}
typedef struct subStr
{
short iStart;
short iEnd;
short szStr;
}ss;
char* subStringSmallest(char* testStr, char* cSet)
{
char* subString = NULL;
int iSzSet = strlen(cSet) + 1;
int iSzString = strlen(testStr)+ 1;
char* cSetBackUp = new char[iSzSet];
memcpy((void*)cSetBackUp, (void*)cSet, iSzSet);
int iStartIndx = -1;
int iEndIndx = -1;
int iIndexStartNext = -1;
std::vector<ss> subStrVec;
int index = 0;
while( *(testStr+index) != '\0' )
{
if (IsInSet(*(testStr+index), cSetBackUp))
{
removeChar(*(testStr+index), cSetBackUp);
if(iStartIndx < 0)
{
iStartIndx = index;
}
else if( iIndexStartNext < 0)
iIndexStartNext = index;
else
;
if (strlen(cSetBackUp) == 0 )
{
iEndIndx = index;
if( iIndexStartNext == -1)
break;
else
{
index = iIndexStartNext;
ss stemp = {iStartIndx, iEndIndx, (iEndIndx-iStartIndx + 1)};
subStrVec.push_back(stemp);
iStartIndx = iEndIndx = iIndexStartNext = -1;
memcpy((void*)cSetBackUp, (void*)cSet, iSzSet);
continue;
}
}
}
else
{
if (IsInSet(*(testStr+index), cSet))
{
if(iIndexStartNext < 0)
iIndexStartNext = index;
}
}
++index;
}
int indexSmallest = 0;
for(int indexVec = 0; indexVec < subStrVec.size(); ++indexVec)
{
if(subStrVec[indexSmallest].szStr > subStrVec[indexVec].szStr)
indexSmallest = indexVec;
}
subString = new char[(subStrVec[indexSmallest].szStr) + 1];
memcpy((void*)subString, (void*)(testStr+ subStrVec[indexSmallest].iStart), subStrVec[indexSmallest].szStr);
memset((void*)(subString + subStrVec[indexSmallest].szStr), 0, 1);
delete[] cSetBackUp;
return subString;
}
//--------------------------------------------------------------------
#6
0
Edit: apparently there's an O(n) algorithm (cf. algorithmist's answer). Obviously this have this will beat the [naive] baseline described below!
编辑:显然有一个O(n)算法(cf算法的答案)。显然,这将打败下面描述的[天真的]基线!
Too bad I gotta go... I'm a bit suspicious that we can get O(n). I'll check in tomorrow to see the winner ;-) Have fun!
太糟糕了,我得走了…我有点怀疑我们能得到O(n)。我明天去看看获胜者;-)玩得开心!
Tentative algorithm:
The general idea is to sequentially try and use a character from str2 found in str1 as the start of a search (in either/both directions) of all the other letters of str2. By keeping a "length of best match so far" value, we can abort searches when they exceed this. Other heuristics can probably be used to further abort suboptimal (so far) solutions. The choice of the order of the starting letters in str1 matters much; it is suggested to start with the letter(s) of str1 which have the lowest count and to try with the other letters, of an increasing count, in subsequent attempts.
暂定算法:一般的想法是顺序地尝试并使用str1中发现的str2中的一个字符作为搜索的开始(在两个方向中)。通过保持“到目前为止最佳匹配的长度”的值,当它们超过这个值时,我们可以中止搜索。其他启发式可能被用于进一步中止次优化(迄今为止)的解决方案。在str1中开始字母顺序的选择非常重要;建议从str1的字母(s)开始,它具有最低的计数,并在随后的尝试中使用其他字母,增加计数。
[loose pseudo-code]
- get count for each letter/character in str1 (number of As, Bs etc.)
- get count for each letter in str2
- minLen = length(str1) + 1 (the +1 indicates you're not sure all chars of
str2 are in str1)
- Starting with the letter from string2 which is found the least in string1,
look for other letters of Str2, in either direction of str1, until you've
found them all (or not, at which case response = impossible => done!).
set x = length(corresponding substring of str1).
- if (x < minLen),
set minlen = x,
also memorize the start/len of the str1 substring.
- continue trying with other letters of str1 (going the up the frequency
list in str1), but abort search as soon as length(substring of strl)
reaches or exceed minLen.
We can find a few other heuristics that would allow aborting a
particular search, based on [pre-calculated ?] distance between a given
letter in str1 and some (all?) of the letters in str2.
- the overall search terminates when minLen = length(str2) or when
we've used all letters of str1 (which match one letter of str2)
as a starting point for the search
#7
0
Here is Java implementation
这是Java实现
public static String shortestSubstrContainingAllChars(String input, String target) {
int needToFind[] = new int[256];
int hasFound[] = new int[256];
int totalCharCount = 0;
String result = null;
char[] targetCharArray = target.toCharArray();
for (int i = 0; i < targetCharArray.length; i++) {
needToFind[targetCharArray[i]]++;
}
char[] inputCharArray = input.toCharArray();
for (int begin = 0, end = 0; end < inputCharArray.length; end++) {
if (needToFind[inputCharArray[end]] == 0) {
continue;
}
hasFound[inputCharArray[end]]++;
if (hasFound[inputCharArray[end]] <= needToFind[inputCharArray[end]]) {
totalCharCount ++;
}
if (totalCharCount == target.length()) {
while (needToFind[inputCharArray[begin]] == 0
|| hasFound[inputCharArray[begin]] > needToFind[inputCharArray[begin]]) {
if (hasFound[inputCharArray[begin]] > needToFind[inputCharArray[begin]]) {
hasFound[inputCharArray[begin]]--;
}
begin++;
}
String substring = input.substring(begin, end + 1);
if (result == null || result.length() > substring.length()) {
result = substring;
}
}
}
return result;
}
Here is the Junit Test
这是Junit测试。
@Test
public void shortestSubstringContainingAllCharsTest() {
String result = StringUtil.shortestSubstrContainingAllChars("acbbaca", "aba");
assertThat(result, equalTo("baca"));
result = StringUtil.shortestSubstrContainingAllChars("acbbADOBECODEBANCaca", "ABC");
assertThat(result, equalTo("BANC"));
result = StringUtil.shortestSubstrContainingAllChars("this is a test string", "tist");
assertThat(result, equalTo("t stri"));
}
#8
0
//[ShortestSubstring.java][1]
public class ShortestSubstring {
public static void main(String[] args) {
String input1 = "My name is Fran";
String input2 = "rim";
System.out.println(getShortestSubstring(input1, input2));
}
private static String getShortestSubstring(String mainString, String toBeSearched) {
int mainStringLength = mainString.length();
int toBeSearchedLength = toBeSearched.length();
if (toBeSearchedLength > mainStringLength) {
throw new IllegalArgumentException("search string cannot be larger than main string");
}
for (int j = 0; j < mainStringLength; j++) {
for (int i = 0; i <= mainStringLength - toBeSearchedLength; i++) {
String substring = mainString.substring(i, i + toBeSearchedLength);
if (checkIfMatchFound(substring, toBeSearched)) {
return substring;
}
}
toBeSearchedLength++;
}
return null;
}
private static boolean checkIfMatchFound(String substring, String toBeSearched) {
char[] charArraySubstring = substring.toCharArray();
char[] charArrayToBeSearched = toBeSearched.toCharArray();
int count = 0;
for (int i = 0; i < charArraySubstring.length; i++) {
for (int j = 0; j < charArrayToBeSearched.length; j++) {
if (String.valueOf(charArraySubstring[i]).equalsIgnoreCase(String.valueOf(charArrayToBeSearched[j]))) {
count++;
}
}
}
return count == charArrayToBeSearched.length;
}
}
#9
0
This is an approach using prime numbers to avoid one loop, and replace it with multiplications. Several other minor optimizations can be made.
这是一种使用质数来避免一个循环的方法,并将其替换为乘法。还可以进行其他一些小型优化。
-
Assign a unique prime number to any of the characters that you want to find, and
1
to the uninteresting characters.为您想要查找的任何字符分配一个唯一的素数,并为无趣的字符指定一个素数。
-
Find the product of a matching string by multiplying the prime number with the number of occurrences it should have. Now this product can only be found if the same prime factors are used.
查找匹配字符串的乘积,将质数与它应该出现的次数相乘。现在这个产品只有在使用相同的主要因素时才能被发现。
-
Search the string from the beginning, multiplying the respective prime number as you move into a running product.
从一开始就搜索字符串,在进入运行的产品时将相应的质数相乘。
-
If the number is greater than the correct sum, remove the first character and divide its prime number out of your running product.
如果数字大于正确的和,去掉第一个字符,并将它的素数从你的运行产品中分离出来。
-
If the number is less than the correct sum, include the next character and multiply it into your running product.
如果数字小于正确的和,包括下一个字符并将其相乘到您的运行产品中。
-
If the number is the same as the correct sum you have found a match, slide beginning and end to next character and continue searching for other matches.
如果这个数字和正确的数字相同,你找到了一个匹配,开始和结束到下一个字符,并继续寻找其他匹配。
-
Decide which of the matches is the shortest.
决定哪一项比赛是最短的。
要点
charcount = { 'a': 3, 'b' : 1 };
str = "kjhdfsbabasdadaaaaasdkaaajbajerhhayeom"
def find (c, s):
Ns = len (s)
C = list (c.keys ())
D = list (c.values ())
# prime numbers assigned to the first 25 chars
prmsi = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 , 97]
# primes used in the key, all other set to 1
prms = []
Cord = [ord(c) - ord('a') for c in C]
for e,p in enumerate(prmsi):
if e in Cord:
prms.append (p)
else:
prms.append (1)
# Product of match
T = 1
for c,d in zip(C,D):
p = prms[ord (c) - ord('a')]
T *= p**d
print ("T=", T)
t = 1 # product of current string
f = 0
i = 0
matches = []
mi = 0
mn = Ns
mm = 0
while i < Ns:
k = prms[ord(s[i]) - ord ('a')]
t *= k
print ("testing:", s[f:i+1])
if (t > T):
# included too many chars: move start
t /= prms[ord(s[f]) - ord('a')] # remove first char, usually division by 1
f += 1 # increment start position
t /= k # will be retested, could be replaced with bool
elif t == T:
# found match
print ("FOUND match:", s[f:i+1])
matches.append (s[f:i+1])
if (i - f) < mn:
mm = mi
mn = i - f
mi += 1
t /= prms[ord(s[f]) - ord('a')] # remove first matching char
# look for next match
i += 1
f += 1
else:
# no match yet, keep searching
i += 1
return (mm, matches)
print (find (charcount, str))
(note: this answer was originally posted to a duplicate question, the original answer is now deleted.)
(注意:这个答案最初被贴在一个重复的问题上,原来的答案现在被删除了。)
#10
0
C# Implementation:
c#实现:
public static Tuple<int, int> FindMinSubstringWindow(string input, string pattern)
{
Tuple<int, int> windowCoords = new Tuple<int, int>(0, input.Length - 1);
int[] patternHist = new int[256];
for (int i = 0; i < pattern.Length; i++)
{
patternHist[pattern[i]]++;
}
int[] inputHist = new int[256];
int minWindowLength = int.MaxValue;
int count = 0;
for (int begin = 0, end = 0; end < input.Length; end++)
{
// Skip what's not in pattern.
if (patternHist[input[end]] == 0)
{
continue;
}
inputHist[input[end]]++;
// Count letters that are in pattern.
if (inputHist[input[end]] <= patternHist[input[end]])
{
count++;
}
// Window found.
if (count == pattern.Length)
{
// Remove extra instances of letters from pattern
// or just letters that aren't part of the pattern
// from the beginning.
while (patternHist[input[begin]] == 0 ||
inputHist[input[begin]] > patternHist[input[begin]])
{
if (inputHist[input[begin]] > patternHist[input[begin]])
{
inputHist[input[begin]]--;
}
begin++;
}
// Current window found.
int windowLength = end - begin + 1;
if (windowLength < minWindowLength)
{
windowCoords = new Tuple<int, int>(begin, end);
minWindowLength = windowLength;
}
}
}
if (count == pattern.Length)
{
return windowCoords;
}
return null;
}
#11
-1
Java code for the approach discussed above:
上面讨论的方法的Java代码:
private static Map<Character, Integer> frequency;
private static Set<Character> charsCovered;
private static Map<Character, Integer> encountered;
/**
* To set the first match index as an intial start point
*/
private static boolean hasStarted = false;
private static int currentStartIndex = 0;
private static int finalStartIndex = 0;
private static int finalEndIndex = 0;
private static int minLen = Integer.MAX_VALUE;
private static int currentLen = 0;
/**
* Whether we have already found the match and now looking for other
* alternatives.
*/
private static boolean isFound = false;
private static char currentChar;
public static String findSmallestSubStringWithAllChars(String big, String small) {
if (null == big || null == small || big.isEmpty() || small.isEmpty()) {
return null;
}
frequency = new HashMap<Character, Integer>();
instantiateFrequencyMap(small);
charsCovered = new HashSet<Character>();
int charsToBeCovered = frequency.size();
encountered = new HashMap<Character, Integer>();
for (int i = 0; i < big.length(); i++) {
currentChar = big.charAt(i);
if (frequency.containsKey(currentChar) && !isFound) {
if (!hasStarted && !isFound) {
hasStarted = true;
currentStartIndex = i;
}
updateEncounteredMapAndCharsCoveredSet(currentChar);
if (charsCovered.size() == charsToBeCovered) {
currentLen = i - currentStartIndex;
isFound = true;
updateMinLength(i);
}
} else if (frequency.containsKey(currentChar) && isFound) {
updateEncounteredMapAndCharsCoveredSet(currentChar);
if (currentChar == big.charAt(currentStartIndex)) {
encountered.put(currentChar, encountered.get(currentChar) - 1);
currentStartIndex++;
while (currentStartIndex < i) {
if (encountered.containsKey(big.charAt(currentStartIndex))
&& encountered.get(big.charAt(currentStartIndex)) > frequency.get(big
.charAt(currentStartIndex))) {
encountered.put(big.charAt(currentStartIndex),
encountered.get(big.charAt(currentStartIndex)) - 1);
} else if (encountered.containsKey(big.charAt(currentStartIndex))) {
break;
}
currentStartIndex++;
}
}
currentLen = i - currentStartIndex;
updateMinLength(i);
}
}
System.out.println("start: " + finalStartIndex + " finalEnd : " + finalEndIndex);
return big.substring(finalStartIndex, finalEndIndex + 1);
}
private static void updateMinLength(int index) {
if (minLen > currentLen) {
minLen = currentLen;
finalStartIndex = currentStartIndex;
finalEndIndex = index;
}
}
private static void updateEncounteredMapAndCharsCoveredSet(Character currentChar) {
if (encountered.containsKey(currentChar)) {
encountered.put(currentChar, encountered.get(currentChar) + 1);
} else {
encountered.put(currentChar, 1);
}
if (encountered.get(currentChar) >= frequency.get(currentChar)) {
charsCovered.add(currentChar);
}
}
private static void instantiateFrequencyMap(String str) {
for (char c : str.toCharArray()) {
if (frequency.containsKey(c)) {
frequency.put(c, frequency.get(c) + 1);
} else {
frequency.put(c, 1);
}
}
}
public static void main(String[] args) {
String big = "this is a test string";
String small = "tist";
System.out.println("len: " + big.length());
System.out.println(findSmallestSubStringWithAllChars(big, small));
}
#12
-1
def minimum_window(s, t, min_length = 100000):
d = {}
for x in t:
if x in d:
d[x]+= 1
else:
d[x] = 1
tot = sum([y for x,y in d.iteritems()])
l = []
ind = 0
for i,x in enumerate(s):
if ind == 1:
l = l + [x]
if x in d:
tot-=1
if not l:
ind = 1
l = [x]
if tot == 0:
if len(l)<min_length:
min_length = len(l)
min_length = minimum_window(s[i+1:], t, min_length)
return min_length
l_s = "ADOBECODEBANC"
t_s = "ABC"
min_length = minimum_window(l_s, t_s)
if min_length == 100000:
print "Not found"
else:
print min_length
#1
31
You can do a histogram sweep in O(N+M)
time and O(1)
space where N
is the number of characters in the first string and M
is the number of characters in the second.
你可以在O(N+M)时间和O(1)空间中进行直方图扫描,其中N为第一个字符串中的字符数,M是第二个字符的数目。
It works like this:
是这样的:
- Make a histogram of the second string's characters (key operation is
hist2[ s2[i] ]++
). - 生成第二个字符串字符的直方图(关键操作是hist2[i] ++)。
- Make a cumulative histogram of the first string's characters until that histogram contains every character that the second string's histogram contains (which I will call "the histogram condition").
- 对第一个字符串的字符进行累计直方图,直到直方图包含第二个字符串的直方图所包含的每个字符(我将其称为“直方图条件”)。
- Then move forwards on the first string, subtracting from the histogram, until it fails to meet the histogram condition. Mark that bit of the first string (before the final move) as your tentative substring.
- 然后向前移动第一个字符串,从直方图中减去,直到它不能满足直方图条件。将第一个字符串的比特(在最后一个移动之前)标记为您的临时子字符串。
- Move the front of the substring forwards again until you meet the histogram condition again. Move the end forwards until it fails again. If this is a shorter substring than the first, mark that as your tentative substring.
- 再次移动子串的前面,直到再次遇到直方图状态。将末端向前移动,直到它再次失败。如果这是一个比第一个更短的子字符串,那么将它标记为您的暂定子字符串。
- Repeat until you've passed through the entire first string.
- 重复,直到你穿过了整个第一个字符串。
- The marked substring is your answer.
- 标记的子字符串是您的答案。
Note that by varying the check you use on the histogram condition, you can choose either to have the same set of characters as the second string, or at least as many characters of each type. (Its just the difference between a[i]>0 && b[i]>0
and a[i]>=b[i]
.)
注意,通过改变您在直方图条件下使用的检查,您可以选择使用相同的字符集作为第二个字符串,或者至少是每种类型的字符。(这只是>和b[i]>0和a[i]>=b[i]的区别。)
You can speed up the histogram checks if you keep a track of which condition is not satisfied when you're trying to satisfy it, and checking only the thing that you decrement when you're trying to break it. (On the initial buildup, you count how many items you've satisfied, and increment that count every time you add a new character that takes the condition from false to true.)
你可以加速直方图检查,如果你在试着满足它的情况下,保持一个不满足的状态,并且只检查在你试图打破它的时候你所减少的东西。(在初始的构建过程中,您可以计算您已经满足了多少项,并在每次添加一个新字符时,将该条件从false改为true。)
#2
37
To see more details including working code, check my blog post at:
要查看更多细节,包括工作代码,请查看我的博客文章:
http://www.leetcode.com/2010/11/finding-minimum-window-in-s-which.html
http://www.leetcode.com/2010/11/finding-minimum-window-in-s-which.html
To help illustrate this approach, I use an example: string1 = "acbbaca"
and string2 = "aba"
. Here, we also use the term "window", which means a contiguous block of characters from string1 (could be interchanged with the term substring).
为了说明这种方法,我使用了一个示例:string1 = "acbbaca"和string2 = "aba"。在这里,我们还使用术语“窗口”,这意味着string1中的一个连续的字符块(可以与术语substring互换)。
i) string1 = "acbbaca" and string2 = "aba".
i) string1 = "acbbaca"和string2 = "aba"。
ii) The first minimum window is found. Notice that we cannot advance begin pointer as hasFound['a'] == needToFind['a'] == 2. Advancing would mean breaking the constraint.
2)发现第一个最小窗口。请注意,我们不能像hasFound['a'] == = 2那样提前开始指针。前进意味着打破约束。
iii) The second window is found. begin pointer still points to the first element 'a'. hasFound['a'] (3) is greater than needToFind['a'] (2). We decrement hasFound['a'] by one and advance begin pointer to the right.
第三,找到第二个窗口。开始指针仍然指向第一个元素'a'。发现['a'](3)大于需要找到['a'](2)。我们减少了一个,并提前开始指向右边的指针。
iv) We skip 'c' since it is not found in string2. Begin pointer now points to 'b'. hasFound['b'] (2) is greater than needToFind['b'] (1). We decrement hasFound['b'] by one and advance begin pointer to the right.
4)我们跳过c,因为它在string2中没有找到。现在开始指针指向“b”。发现['b'](2)比需要找到['b'](1)更大。我们减少了一个['b'],并且提前开始指向正确的指针。
v) Begin pointer now points to the next 'b'. hasFound['b'] (1) is equal to needToFind['b'] (1). We stop immediately and this is our newly found minimum window.
开始指针指向下一个'b'。发现['b'](1)等于需要找到['b'](1)。我们立即停止,这是我们新发现的最小窗口。
The idea is mainly based on the help of two pointers (begin and end position of the window) and two tables (needToFind and hasFound) while traversing string1. needToFind stores the total count of a character in string2 and hasFound stores the total count of a character met so far. We also use a count variable to store the total characters in string2 that's met so far (not counting characters where hasFound[x] exceeds needToFind[x]). When count equals string2's length, we know a valid window is found.
这个想法主要基于两个指针的帮助(窗口的开始和结束位置)和两个表(需要查找和hasFound),同时遍历string1。needToFind存储string2中一个字符的总数,并且已经找到了一个字符的总数。我们还使用count变量来存储到目前为止遇到的string2中的全部字符(不包括已经发现[x]超出需要的字符[x])。当count等于string2的长度时,我们知道一个有效的窗口被找到。
Each time we advance the end pointer (pointing to an element x), we increment hasFound[x] by one. We also increment count by one if hasFound[x] is less than or equal to needToFind[x]. Why? When the constraint is met (that is, count equals to string2's size), we immediately advance begin pointer as far right as possible while maintaining the constraint.
每次我们向前进结束指针(指向一个元素x),我们就会增加一个。如果发现[x]小于或等于需要查找[x],我们也会增加一个。为什么?当满足约束时(即count等于string2的大小),我们会在保持约束的同时,立即将开始指针尽可能地向前推进。
How do we check if it is maintaining the constraint? Assume that begin points to an element x, we check if hasFound[x] is greater than needToFind[x]. If it is, we can decrement hasFound[x] by one and advancing begin pointer without breaking the constraint. On the other hand, if it is not, we stop immediately as advancing begin pointer breaks the window constraint.
我们如何检查它是否保持约束?假设开始指向一个元素x,我们检查是否发现[x]大于需要查找[x]。如果是的话,我们可以通过一个和一个前进的开始指针,而不打破约束。另一方面,如果不是,我们立即停止,因为前进的指针打破了窗口的限制。
Finally, we check if the minimum window length is less than the current minimum. Update the current minimum if a new minimum is found.
最后,我们检查最小窗口长度是否小于当前最小值。如果发现新的最小值,则更新当前最小值。
Essentially, the algorithm finds the first window that satisfies the constraint, then continue maintaining the constraint throughout.
基本上,算法找到满足约束的第一个窗口,然后继续保持约束。
#3
6
Here's an O(n) solution. The basic idea is simple: for each starting index, find the least ending index such that the substring contains all of the necessary letters. The trick is that the least ending index increases over the course of the function, so with a little data structure support, we consider each character at most twice.
这是一个O(n)的解决方案。基本思想很简单:对于每个起始索引,找到最小的结束索引,这样子字符串包含所有必要的字母。诀窍在于,最小的结束索引在函数的过程中增加,因此在少量的数据结构支持下,我们最多考虑每个字符两次。
In Python:
在Python中:
from collections import defaultdict
def smallest(s1, s2):
assert s2 != ''
d = defaultdict(int)
nneg = [0] # number of negative entries in d
def incr(c):
d[c] += 1
if d[c] == 0:
nneg[0] -= 1
def decr(c):
if d[c] == 0:
nneg[0] += 1
d[c] -= 1
for c in s2:
decr(c)
minlen = len(s1) + 1
j = 0
for i in xrange(len(s1)):
while nneg[0] > 0:
if j >= len(s1):
return minlen
incr(s1[j])
j += 1
minlen = min(minlen, j - i)
decr(s1[i])
return minlen
#4
2
I received the same interview question. I am a C++ candidate but I was in a position to code relatively fast in JAVA.
我收到了同样的面试问题。我是一个c++的候选人,但是我在JAVA中代码相对较快。
Java [Courtesy : Sumod Mathilakath]
Java[礼貌:Sumod Mathilakath]
import java.io.*;
import java.util.*;
class UserMainCode
{
public String GetSubString(String input1,String input2){
// Write code here...
return find(input1, input2);
}
private static boolean containsPatternChar(int[] sCount, int[] pCount) {
for(int i=0;i<256;i++) {
if(pCount[i]>sCount[i])
return false;
}
return true;
}
public static String find(String s, String p) {
if (p.length() > s.length())
return null;
int[] pCount = new int[256];
int[] sCount = new int[256];
// Time: O(p.lenght)
for(int i=0;i<p.length();i++) {
pCount[(int)(p.charAt(i))]++;
sCount[(int)(s.charAt(i))]++;
}
int i = 0, j = p.length(), min = Integer.MAX_VALUE;
String res = null;
// Time: O(s.lenght)
while (j < s.length()) {
if (containsPatternChar(sCount, pCount)) {
if ((j - i) < min) {
min = j - i;
res = s.substring(i, j);
// This is the smallest possible substring.
if(min==p.length())
break;
// Reduce the window size.
sCount[(int)(s.charAt(i))]--;
i++;
}
} else {
sCount[(int)(s.charAt(j))]++;
// Increase the window size.
j++;
}
}
System.out.println(res);
return res;
}
}
C++ [Courtesy : sundeepblue]
c++(礼貌sundeepblue):
#include <iostream>
#include <vector>
#include <string>
#include <climits>
using namespace std;
string find_minimum_window(string s, string t) {
if(s.empty() || t.empty()) return;
int ns = s.size(), nt = t.size();
vector<int> total(256, 0);
vector<int> sofar(256, 0);
for(int i=0; i<nt; i++)
total[t[i]]++;
int L = 0, R;
int minL = 0; //gist2
int count = 0;
int min_win_len = INT_MAX;
for(R=0; R<ns; R++) { // gist0, a big for loop
if(total[s[R]] == 0) continue;
else sofar[s[R]]++;
if(sofar[s[R]] <= total[s[R]]) // gist1, <= not <
count++;
if(count == nt) { // POS1
while(true) {
char c = s[L];
if(total[c] == 0) { L++; }
else if(sofar[c] > total[c]) {
sofar[c]--;
L++;
}
else break;
}
if(R - L + 1 < min_win_len) { // this judge should be inside POS1
min_win_len = R - L + 1;
minL = L;
}
}
}
string res;
if(count == nt) // gist3, cannot forget this.
res = s.substr(minL, min_win_len); // gist4, start from "minL" not "L"
return res;
}
int main() {
string s = "abdccdedca";
cout << find_minimum_window(s, "acd");
}
Erlang [Courtesy : wardbekker]
Erlang(礼貌wardbekker):
-module(leetcode).
-export([min_window/0]).
%% Given a string S and a string T, find the minimum window in S which will contain all the characters in T in complexity O(n).
%% For example,
%% S = "ADOBECODEBANC"
%% T = "ABC"
%% Minimum window is "BANC".
%% Note:
%% If there is no such window in S that covers all characters in T, return the emtpy string "".
%% If there are multiple such windows, you are guaranteed that there will always be only one unique minimum window in S.
min_window() ->
"eca" = min_window("cabeca", "cae"),
"eca" = min_window("cfabeca", "cae"),
"aec" = min_window("cabefgecdaecf", "cae"),
"cwae" = min_window("cabwefgewcwaefcf", "cae"),
"BANC" = min_window("ADOBECODEBANC", "ABC"),
ok.
min_window(T, S) ->
min_window(T, S, []).
min_window([], _T, MinWindow) ->
MinWindow;
min_window([H | Rest], T, MinWindow) ->
NewMinWindow = case lists:member(H, T) of
true ->
MinWindowFound = fullfill_window(Rest, lists:delete(H, T), [H]),
case length(MinWindow) == 0 orelse (length(MinWindow) > length(MinWindowFound)
andalso length(MinWindowFound) > 0) of
true ->
MinWindowFound;
false ->
MinWindow
end;
false ->
MinWindow
end,
min_window(Rest, T, NewMinWindow).
fullfill_window(_, [], Acc) ->
%% window completed
Acc;
fullfill_window([], _T, _Acc) ->
%% no window found
"";
fullfill_window([H | Rest], T, Acc) ->
%% completing window
case lists:member(H, T) of
true ->
fullfill_window(Rest, lists:delete(H, T), Acc ++ [H]);
false ->
fullfill_window(Rest, T, Acc ++ [H])
end.
REF:
裁判:
- http://articles.leetcode.com/finding-minimum-window-in-s-which/#comment-511216
- http://articles.leetcode.com/finding-minimum-window-in-s-which/评论- 511216
- http://www.mif.vu.lt/~valdas/ALGORITMAI/LITERATURA/Cormen/Cormen.pdf
- http://www.mif.vu.lt/有/ ALGORITMAI LITERATURA /科尔曼/ Cormen.pdf
#5
1
Please have a look at this as well:
请看看这个:
//-----------------------------------------------------------------------
bool IsInSet(char ch, char* cSet)
{
char* cSetptr = cSet;
int index = 0;
while (*(cSet+ index) != '\0')
{
if(ch == *(cSet+ index))
{
return true;
}
++index;
}
return false;
}
void removeChar(char ch, char* cSet)
{
bool bShift = false;
int index = 0;
while (*(cSet + index) != '\0')
{
if( (ch == *(cSet + index)) || bShift)
{
*(cSet + index) = *(cSet + index + 1);
bShift = true;
}
++index;
}
}
typedef struct subStr
{
short iStart;
short iEnd;
short szStr;
}ss;
char* subStringSmallest(char* testStr, char* cSet)
{
char* subString = NULL;
int iSzSet = strlen(cSet) + 1;
int iSzString = strlen(testStr)+ 1;
char* cSetBackUp = new char[iSzSet];
memcpy((void*)cSetBackUp, (void*)cSet, iSzSet);
int iStartIndx = -1;
int iEndIndx = -1;
int iIndexStartNext = -1;
std::vector<ss> subStrVec;
int index = 0;
while( *(testStr+index) != '\0' )
{
if (IsInSet(*(testStr+index), cSetBackUp))
{
removeChar(*(testStr+index), cSetBackUp);
if(iStartIndx < 0)
{
iStartIndx = index;
}
else if( iIndexStartNext < 0)
iIndexStartNext = index;
else
;
if (strlen(cSetBackUp) == 0 )
{
iEndIndx = index;
if( iIndexStartNext == -1)
break;
else
{
index = iIndexStartNext;
ss stemp = {iStartIndx, iEndIndx, (iEndIndx-iStartIndx + 1)};
subStrVec.push_back(stemp);
iStartIndx = iEndIndx = iIndexStartNext = -1;
memcpy((void*)cSetBackUp, (void*)cSet, iSzSet);
continue;
}
}
}
else
{
if (IsInSet(*(testStr+index), cSet))
{
if(iIndexStartNext < 0)
iIndexStartNext = index;
}
}
++index;
}
int indexSmallest = 0;
for(int indexVec = 0; indexVec < subStrVec.size(); ++indexVec)
{
if(subStrVec[indexSmallest].szStr > subStrVec[indexVec].szStr)
indexSmallest = indexVec;
}
subString = new char[(subStrVec[indexSmallest].szStr) + 1];
memcpy((void*)subString, (void*)(testStr+ subStrVec[indexSmallest].iStart), subStrVec[indexSmallest].szStr);
memset((void*)(subString + subStrVec[indexSmallest].szStr), 0, 1);
delete[] cSetBackUp;
return subString;
}
//--------------------------------------------------------------------
#6
0
Edit: apparently there's an O(n) algorithm (cf. algorithmist's answer). Obviously this have this will beat the [naive] baseline described below!
编辑:显然有一个O(n)算法(cf算法的答案)。显然,这将打败下面描述的[天真的]基线!
Too bad I gotta go... I'm a bit suspicious that we can get O(n). I'll check in tomorrow to see the winner ;-) Have fun!
太糟糕了,我得走了…我有点怀疑我们能得到O(n)。我明天去看看获胜者;-)玩得开心!
Tentative algorithm:
The general idea is to sequentially try and use a character from str2 found in str1 as the start of a search (in either/both directions) of all the other letters of str2. By keeping a "length of best match so far" value, we can abort searches when they exceed this. Other heuristics can probably be used to further abort suboptimal (so far) solutions. The choice of the order of the starting letters in str1 matters much; it is suggested to start with the letter(s) of str1 which have the lowest count and to try with the other letters, of an increasing count, in subsequent attempts.
暂定算法:一般的想法是顺序地尝试并使用str1中发现的str2中的一个字符作为搜索的开始(在两个方向中)。通过保持“到目前为止最佳匹配的长度”的值,当它们超过这个值时,我们可以中止搜索。其他启发式可能被用于进一步中止次优化(迄今为止)的解决方案。在str1中开始字母顺序的选择非常重要;建议从str1的字母(s)开始,它具有最低的计数,并在随后的尝试中使用其他字母,增加计数。
[loose pseudo-code]
- get count for each letter/character in str1 (number of As, Bs etc.)
- get count for each letter in str2
- minLen = length(str1) + 1 (the +1 indicates you're not sure all chars of
str2 are in str1)
- Starting with the letter from string2 which is found the least in string1,
look for other letters of Str2, in either direction of str1, until you've
found them all (or not, at which case response = impossible => done!).
set x = length(corresponding substring of str1).
- if (x < minLen),
set minlen = x,
also memorize the start/len of the str1 substring.
- continue trying with other letters of str1 (going the up the frequency
list in str1), but abort search as soon as length(substring of strl)
reaches or exceed minLen.
We can find a few other heuristics that would allow aborting a
particular search, based on [pre-calculated ?] distance between a given
letter in str1 and some (all?) of the letters in str2.
- the overall search terminates when minLen = length(str2) or when
we've used all letters of str1 (which match one letter of str2)
as a starting point for the search
#7
0
Here is Java implementation
这是Java实现
public static String shortestSubstrContainingAllChars(String input, String target) {
int needToFind[] = new int[256];
int hasFound[] = new int[256];
int totalCharCount = 0;
String result = null;
char[] targetCharArray = target.toCharArray();
for (int i = 0; i < targetCharArray.length; i++) {
needToFind[targetCharArray[i]]++;
}
char[] inputCharArray = input.toCharArray();
for (int begin = 0, end = 0; end < inputCharArray.length; end++) {
if (needToFind[inputCharArray[end]] == 0) {
continue;
}
hasFound[inputCharArray[end]]++;
if (hasFound[inputCharArray[end]] <= needToFind[inputCharArray[end]]) {
totalCharCount ++;
}
if (totalCharCount == target.length()) {
while (needToFind[inputCharArray[begin]] == 0
|| hasFound[inputCharArray[begin]] > needToFind[inputCharArray[begin]]) {
if (hasFound[inputCharArray[begin]] > needToFind[inputCharArray[begin]]) {
hasFound[inputCharArray[begin]]--;
}
begin++;
}
String substring = input.substring(begin, end + 1);
if (result == null || result.length() > substring.length()) {
result = substring;
}
}
}
return result;
}
Here is the Junit Test
这是Junit测试。
@Test
public void shortestSubstringContainingAllCharsTest() {
String result = StringUtil.shortestSubstrContainingAllChars("acbbaca", "aba");
assertThat(result, equalTo("baca"));
result = StringUtil.shortestSubstrContainingAllChars("acbbADOBECODEBANCaca", "ABC");
assertThat(result, equalTo("BANC"));
result = StringUtil.shortestSubstrContainingAllChars("this is a test string", "tist");
assertThat(result, equalTo("t stri"));
}
#8
0
//[ShortestSubstring.java][1]
public class ShortestSubstring {
public static void main(String[] args) {
String input1 = "My name is Fran";
String input2 = "rim";
System.out.println(getShortestSubstring(input1, input2));
}
private static String getShortestSubstring(String mainString, String toBeSearched) {
int mainStringLength = mainString.length();
int toBeSearchedLength = toBeSearched.length();
if (toBeSearchedLength > mainStringLength) {
throw new IllegalArgumentException("search string cannot be larger than main string");
}
for (int j = 0; j < mainStringLength; j++) {
for (int i = 0; i <= mainStringLength - toBeSearchedLength; i++) {
String substring = mainString.substring(i, i + toBeSearchedLength);
if (checkIfMatchFound(substring, toBeSearched)) {
return substring;
}
}
toBeSearchedLength++;
}
return null;
}
private static boolean checkIfMatchFound(String substring, String toBeSearched) {
char[] charArraySubstring = substring.toCharArray();
char[] charArrayToBeSearched = toBeSearched.toCharArray();
int count = 0;
for (int i = 0; i < charArraySubstring.length; i++) {
for (int j = 0; j < charArrayToBeSearched.length; j++) {
if (String.valueOf(charArraySubstring[i]).equalsIgnoreCase(String.valueOf(charArrayToBeSearched[j]))) {
count++;
}
}
}
return count == charArrayToBeSearched.length;
}
}
#9
0
This is an approach using prime numbers to avoid one loop, and replace it with multiplications. Several other minor optimizations can be made.
这是一种使用质数来避免一个循环的方法,并将其替换为乘法。还可以进行其他一些小型优化。
-
Assign a unique prime number to any of the characters that you want to find, and
1
to the uninteresting characters.为您想要查找的任何字符分配一个唯一的素数,并为无趣的字符指定一个素数。
-
Find the product of a matching string by multiplying the prime number with the number of occurrences it should have. Now this product can only be found if the same prime factors are used.
查找匹配字符串的乘积,将质数与它应该出现的次数相乘。现在这个产品只有在使用相同的主要因素时才能被发现。
-
Search the string from the beginning, multiplying the respective prime number as you move into a running product.
从一开始就搜索字符串,在进入运行的产品时将相应的质数相乘。
-
If the number is greater than the correct sum, remove the first character and divide its prime number out of your running product.
如果数字大于正确的和,去掉第一个字符,并将它的素数从你的运行产品中分离出来。
-
If the number is less than the correct sum, include the next character and multiply it into your running product.
如果数字小于正确的和,包括下一个字符并将其相乘到您的运行产品中。
-
If the number is the same as the correct sum you have found a match, slide beginning and end to next character and continue searching for other matches.
如果这个数字和正确的数字相同,你找到了一个匹配,开始和结束到下一个字符,并继续寻找其他匹配。
-
Decide which of the matches is the shortest.
决定哪一项比赛是最短的。
要点
charcount = { 'a': 3, 'b' : 1 };
str = "kjhdfsbabasdadaaaaasdkaaajbajerhhayeom"
def find (c, s):
Ns = len (s)
C = list (c.keys ())
D = list (c.values ())
# prime numbers assigned to the first 25 chars
prmsi = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 , 97]
# primes used in the key, all other set to 1
prms = []
Cord = [ord(c) - ord('a') for c in C]
for e,p in enumerate(prmsi):
if e in Cord:
prms.append (p)
else:
prms.append (1)
# Product of match
T = 1
for c,d in zip(C,D):
p = prms[ord (c) - ord('a')]
T *= p**d
print ("T=", T)
t = 1 # product of current string
f = 0
i = 0
matches = []
mi = 0
mn = Ns
mm = 0
while i < Ns:
k = prms[ord(s[i]) - ord ('a')]
t *= k
print ("testing:", s[f:i+1])
if (t > T):
# included too many chars: move start
t /= prms[ord(s[f]) - ord('a')] # remove first char, usually division by 1
f += 1 # increment start position
t /= k # will be retested, could be replaced with bool
elif t == T:
# found match
print ("FOUND match:", s[f:i+1])
matches.append (s[f:i+1])
if (i - f) < mn:
mm = mi
mn = i - f
mi += 1
t /= prms[ord(s[f]) - ord('a')] # remove first matching char
# look for next match
i += 1
f += 1
else:
# no match yet, keep searching
i += 1
return (mm, matches)
print (find (charcount, str))
(note: this answer was originally posted to a duplicate question, the original answer is now deleted.)
(注意:这个答案最初被贴在一个重复的问题上,原来的答案现在被删除了。)
#10
0
C# Implementation:
c#实现:
public static Tuple<int, int> FindMinSubstringWindow(string input, string pattern)
{
Tuple<int, int> windowCoords = new Tuple<int, int>(0, input.Length - 1);
int[] patternHist = new int[256];
for (int i = 0; i < pattern.Length; i++)
{
patternHist[pattern[i]]++;
}
int[] inputHist = new int[256];
int minWindowLength = int.MaxValue;
int count = 0;
for (int begin = 0, end = 0; end < input.Length; end++)
{
// Skip what's not in pattern.
if (patternHist[input[end]] == 0)
{
continue;
}
inputHist[input[end]]++;
// Count letters that are in pattern.
if (inputHist[input[end]] <= patternHist[input[end]])
{
count++;
}
// Window found.
if (count == pattern.Length)
{
// Remove extra instances of letters from pattern
// or just letters that aren't part of the pattern
// from the beginning.
while (patternHist[input[begin]] == 0 ||
inputHist[input[begin]] > patternHist[input[begin]])
{
if (inputHist[input[begin]] > patternHist[input[begin]])
{
inputHist[input[begin]]--;
}
begin++;
}
// Current window found.
int windowLength = end - begin + 1;
if (windowLength < minWindowLength)
{
windowCoords = new Tuple<int, int>(begin, end);
minWindowLength = windowLength;
}
}
}
if (count == pattern.Length)
{
return windowCoords;
}
return null;
}
#11
-1
Java code for the approach discussed above:
上面讨论的方法的Java代码:
private static Map<Character, Integer> frequency;
private static Set<Character> charsCovered;
private static Map<Character, Integer> encountered;
/**
* To set the first match index as an intial start point
*/
private static boolean hasStarted = false;
private static int currentStartIndex = 0;
private static int finalStartIndex = 0;
private static int finalEndIndex = 0;
private static int minLen = Integer.MAX_VALUE;
private static int currentLen = 0;
/**
* Whether we have already found the match and now looking for other
* alternatives.
*/
private static boolean isFound = false;
private static char currentChar;
public static String findSmallestSubStringWithAllChars(String big, String small) {
if (null == big || null == small || big.isEmpty() || small.isEmpty()) {
return null;
}
frequency = new HashMap<Character, Integer>();
instantiateFrequencyMap(small);
charsCovered = new HashSet<Character>();
int charsToBeCovered = frequency.size();
encountered = new HashMap<Character, Integer>();
for (int i = 0; i < big.length(); i++) {
currentChar = big.charAt(i);
if (frequency.containsKey(currentChar) && !isFound) {
if (!hasStarted && !isFound) {
hasStarted = true;
currentStartIndex = i;
}
updateEncounteredMapAndCharsCoveredSet(currentChar);
if (charsCovered.size() == charsToBeCovered) {
currentLen = i - currentStartIndex;
isFound = true;
updateMinLength(i);
}
} else if (frequency.containsKey(currentChar) && isFound) {
updateEncounteredMapAndCharsCoveredSet(currentChar);
if (currentChar == big.charAt(currentStartIndex)) {
encountered.put(currentChar, encountered.get(currentChar) - 1);
currentStartIndex++;
while (currentStartIndex < i) {
if (encountered.containsKey(big.charAt(currentStartIndex))
&& encountered.get(big.charAt(currentStartIndex)) > frequency.get(big
.charAt(currentStartIndex))) {
encountered.put(big.charAt(currentStartIndex),
encountered.get(big.charAt(currentStartIndex)) - 1);
} else if (encountered.containsKey(big.charAt(currentStartIndex))) {
break;
}
currentStartIndex++;
}
}
currentLen = i - currentStartIndex;
updateMinLength(i);
}
}
System.out.println("start: " + finalStartIndex + " finalEnd : " + finalEndIndex);
return big.substring(finalStartIndex, finalEndIndex + 1);
}
private static void updateMinLength(int index) {
if (minLen > currentLen) {
minLen = currentLen;
finalStartIndex = currentStartIndex;
finalEndIndex = index;
}
}
private static void updateEncounteredMapAndCharsCoveredSet(Character currentChar) {
if (encountered.containsKey(currentChar)) {
encountered.put(currentChar, encountered.get(currentChar) + 1);
} else {
encountered.put(currentChar, 1);
}
if (encountered.get(currentChar) >= frequency.get(currentChar)) {
charsCovered.add(currentChar);
}
}
private static void instantiateFrequencyMap(String str) {
for (char c : str.toCharArray()) {
if (frequency.containsKey(c)) {
frequency.put(c, frequency.get(c) + 1);
} else {
frequency.put(c, 1);
}
}
}
public static void main(String[] args) {
String big = "this is a test string";
String small = "tist";
System.out.println("len: " + big.length());
System.out.println(findSmallestSubStringWithAllChars(big, small));
}
#12
-1
def minimum_window(s, t, min_length = 100000):
d = {}
for x in t:
if x in d:
d[x]+= 1
else:
d[x] = 1
tot = sum([y for x,y in d.iteritems()])
l = []
ind = 0
for i,x in enumerate(s):
if ind == 1:
l = l + [x]
if x in d:
tot-=1
if not l:
ind = 1
l = [x]
if tot == 0:
if len(l)<min_length:
min_length = len(l)
min_length = minimum_window(s[i+1:], t, min_length)
return min_length
l_s = "ADOBECODEBANC"
t_s = "ABC"
min_length = minimum_window(l_s, t_s)
if min_length == 100000:
print "Not found"
else:
print min_length