简述:
关于敏感词过滤可以看成是一种文本反垃圾算法,例如
题目:敏感词文本文件 filtered_words.txt,当用户输入敏感词语,则用 星号 * 替换,例如当用户输入「北京是个好城市」,则变成「**是个好城市」
代码:
1
2
3
4
5
6
7
8
9
10
11
12
13
|
#coding=utf-8
def filterwords(x):
with open (x, 'r' ) as f:
text = f.read()
print text.split( '\n' )
userinput = raw_input ( 'myinput:' )
for i in text.split( '\n' ):
if i in userinput:
replace_str = '*' * len (i.decode( 'utf-8' ))
word = userinput.replace(i,replace_str)
return word
print filterwords( 'filtered_words.txt' )
|
再例如反黄系列:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
开发敏感词语过滤程序,提示用户输入评论内容,如果用户输入的内容中包含特殊的字符:
敏感词列表 li = [ "苍老师" , "东京热" ,”武藤兰”,”波多野结衣”]
则将用户输入的内容中的敏感词汇替换成 * * * ,并添加到一个列表中;如果用户输入的内容没有敏感词汇,则直接添加到上述的列表中。
content = input ( '请输入你的内容:' )
li = [ "苍老师" , "东京热" , "武藤兰" , "波多野结衣" ]
i = 0
while i < 4 :
for li[i] in content:
li1 = content.replace( '苍老师' , '***' )
li2 = li1.replace( '东京热' , '***' )
li3 = li2.replace( '武藤兰' , '***' )
li4 = li3.replace( '波多野结衣' , '***' )
else :
pass
i + = 1
|
实战案例:
一道bat面试题:快速替换10亿条标题中的5万个敏感词,有哪些解决思路?
有十亿个标题,存在一个文件中,一行一个标题。有5万个敏感词,存在另一个文件。写一个程序过滤掉所有标题中的所有敏感词,保存到另一个文件中。
1、DFA过滤敏感词算法
在实现文字过滤的算法中,DFA是比较好的实现算法。DFA即Deterministic Finite Automaton,也就是确定有穷自动机。
算法核心是建立了以敏感词为基础的许多敏感词树。
python 实现DFA算法:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
|
# -*- coding:utf-8 -*-
import time
time1 = time.time()
# DFA算法
class DFAFilter():
def __init__( self ):
self .keyword_chains = {}
self .delimit = '\x00'
def add( self , keyword):
keyword = keyword.lower()
chars = keyword.strip()
if not chars:
return
level = self .keyword_chains
for i in range ( len (chars)):
if chars[i] in level:
level = level[chars[i]]
else :
if not isinstance (level, dict ):
break
for j in range (i, len (chars)):
level[chars[j]] = {}
last_level, last_char = level, chars[j]
level = level[chars[j]]
last_level[last_char] = { self .delimit: 0 }
break
if i = = len (chars) - 1 :
level[ self .delimit] = 0
def parse( self , path):
with open (path,encoding = 'utf-8' ) as f:
for keyword in f:
self .add( str (keyword).strip())
def filter ( self , message, repl = "*" ):
message = message.lower()
ret = []
start = 0
while start < len (message):
level = self .keyword_chains
step_ins = 0
for char in message[start:]:
if char in level:
step_ins + = 1
if self .delimit not in level[char]:
level = level[char]
else :
ret.append(repl * step_ins)
start + = step_ins - 1
break
else :
ret.append(message[start])
break
else :
ret.append(message[start])
start + = 1
return ''.join(ret)
if __name__ = = "__main__" :
gfw = DFAFilter()
path = "F:/文本反垃圾算法/sensitive_words.txt"
gfw.parse(path)
text = "**苹果新品发布会雞八"
result = gfw. filter (text)
print (text)
print (result)
time2 = time.time()
print ( '总共耗时:' + str (time2 - time1) + 's' )
|
运行效果:
1
2
3
|
**苹果新品发布会雞八
* * * * 苹果新品发布会 * *
总共耗时: 0.0010344982147216797s
|
2、AC自动机过滤敏感词算法
AC自动机:一个常见的例子就是给出n个单词,再给出一段包含m个字符的文章,让你找出有多少个单词在文章里出现过。
简单地讲,AC自动机就是字典树+kmp算法+失配指针
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
|
# -*- coding:utf-8 -*-
import time
time1 = time.time()
# AC自动机算法
class node( object ):
def __init__( self ):
self . next = {}
self .fail = None
self .isWord = False
self .word = ""
class ac_automation( object ):
def __init__( self ):
self .root = node()
# 添加敏感词函数
def addword( self , word):
temp_root = self .root
for char in word:
if char not in temp_root. next :
temp_root. next [char] = node()
temp_root = temp_root. next [char]
temp_root.isWord = True
temp_root.word = word
# 失败指针函数
def make_fail( self ):
temp_que = []
temp_que.append( self .root)
while len (temp_que) ! = 0 :
temp = temp_que.pop( 0 )
p = None
for key,value in temp. next .item():
if temp = = self .root:
temp. next [key].fail = self .root
else :
p = temp.fail
while p is not None :
if key in p. next :
temp. next [key].fail = p.fail
break
p = p.fail
if p is None :
temp. next [key].fail = self .root
temp_que.append(temp. next [key])
# 查找敏感词函数
def search( self , content):
p = self .root
result = []
currentposition = 0
while currentposition < len (content):
word = content[currentposition]
while word in p. next = = False and p ! = self .root:
p = p.fail
if word in p. next :
p = p. next [word]
else :
p = self .root
if p.isWord:
result.append(p.word)
p = self .root
currentposition + = 1
return result
# 加载敏感词库函数
def parse( self , path):
with open (path,encoding = 'utf-8' ) as f:
for keyword in f:
self .addword( str (keyword).strip())
# 敏感词替换函数
def words_replace( self , text):
"""
:param ah: AC自动机
:param text: 文本
:return: 过滤敏感词之后的文本
"""
result = list ( set ( self .search(text)))
for x in result:
m = text.replace(x, '*' * len (x))
text = m
return text
if __name__ = = '__main__' :
ah = ac_automation()
path = 'F:/文本反垃圾算法/sensitive_words.txt'
ah.parse(path)
text1 = "**苹果新品发布会雞八"
text2 = ah.words_replace(text1)
print (text1)
print (text2)
time2 = time.time()
print ( '总共耗时:' + str (time2 - time1) + 's' )
|
运行结果:
1
2
3
|
**苹果新品发布会雞八
* * * * 苹果新品发布会 * *
总共耗时: 0.0010304450988769531s
|
以上就是python实现过滤敏感词的详细内容,更多关于python 过滤敏感词的资料请关注服务器之家其它相关文章!
原文链接:https://cloud.tencent.com/developer/article/1395616