题目链接
CF643E. Bear and Destroying Subtrees
题解
dp[i][j]表示以i为根的子树中,树高小于等于j的概率
转移就是dp[i][j] = 0.5 + 0.5 (dp[i][j-1]) 首先是边不连的概率,其次是<=dp[son][j -1]的
然后我zz了
对于新增一个点,对于父亲的深度影响只有该节点的深度+1,除掉旧的乘上新的就OK,我全更新了一遍...,写出了奇怪的bug...
对于新点,只需要向上更新60次就好了,因为\(\frac{1}{2^60}\)已经足够小了
代码
#include<cstdio>
#include<algorithm>
#include<vector>
//#define int long long
using namespace std;
const int maxn = 5 * 1e5 + 10, h = 60;
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int T, Q, fa[maxn], node;
double f[maxn][61];
main() {
Q = read(); node = 1;
for(int i = 0;i < h;++ i) f[node][i] = 1.0;
while(Q--) {
int opt = read(), x = read();
if(opt == 1) {
fa[++ node] = x;
for(int i = 0; i < h; i++) f[node][i] = 1;
double pre = f[x][0], now;
f[x][0] *= 0.5;
for(int i = 1; i < h && x; i++, x = fa[x]) {
now = f[fa[x]][i];
f[fa[x]][i] /= 0.5 + 0.5 * pre;
f[fa[x]][i] *= 0.5 + 0.5 * f[x][i - 1];
pre = now;
}
} else if(opt == 2) {
double ans = 0;
for(int i = 0; i < h; i++) ans += i * (f[x][i] - f[x][i - 1]);
printf("%.10lf\n", ans);
}
}
return 0;
}
CF643E. Bear and Destroying Subtrees 期望dp的更多相关文章
-
[CF643E]Bear and Destroying Subtrees(期望,忽略误差)
Description: 给你一棵初始只有根为1的树 两种操作 1 x 表示加入一个新点以 x为父亲 2 x 表示以 x 为根的子树期望最深深度 每条边都有 \(\frac{1}{ ...
-
笔记-CF643E Bear and Destroying Subtrees
CF643E Bear and Destroying Subtrees 设 \(f_{i,j}\) 表示节点 \(i\) 的子树深度为 \(\le j\) 的概率,\(ch_i\) 表示 \(i\) ...
-
CF643E Bear and Destroying Subtrees
题解 我们可以先写出\(dp\)式来. 设\(dp[u][i]\)表示以\(u\)为根的子树深度不超过\(i-1\)的概率 \(dp[u][i]=\prod (dp[v][i-1]+1)*\frac{ ...
-
CF 643 E. Bear and Destroying Subtrees
E. Bear and Destroying Subtrees http://codeforces.com/problemset/problem/643/E 题意: Q个操作. 加点,在原来的树上加一 ...
-
Codeforces.643E.Bear and Destroying Subtrees(DP 期望)
题目链接 \(Description\) 有一棵树.Limak可以攻击树上的某棵子树,然后这棵子树上的每条边有\(\frac{1}{2}\)的概率消失.定义 若攻击以\(x\)为根的子树,高度\(ht ...
-
[cf674E]Bear and Destroying Subtrees
令$f_{i,j}$表示以$i$为根的子树中,深度小于等于$j$的概率,那么$ans_{i}=\sum_{j=1}^{dep}(f_{i,j}-f_{i,j-1})j$ 大约来估计一下$f_{i,j} ...
-
【BZOJ-1419】Red is good 概率期望DP
1419: Red is good Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 660 Solved: 257[Submit][Status][Di ...
-
[NOIP2016]换教室 D1 T3 Floyed+期望DP
[NOIP2016]换教室 D1 T3 Description 对于刚上大学的牛牛来说, 他面临的第一个问题是如何根据实际情况中情合适的课程. 在可以选择的课程中,有2n节课程安排在n个时间段上.在第 ...
-
HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)
题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由 ...
随机推荐
-
Xml的简单介绍和Xml格式
XML 被设计用来结构化.存储以及传输信息.HTML 被设计用来显示数据. 1.XML是什么? 1)XML 指可扩展标记语言(EXtensible Markup Language) 2)XML 是一种 ...
-
LUA require 搜索路径指定方法
如果是一个 *.LUA 的文件, 里面用到了自己写的库, 或者第三方写的库, 但是你不想把它放到 lua 的安装目录里, 则在代码里面可以指定require搜索的路径. package.path = ...
-
Uva 11324 最大团
题目链接:http://vjudge.net/contest/141990#problem/B 题意: 给一张有向图G,求一个结点集数最大的结点集,是的该结点集中任意两个结点 u 和 v,满足: 要么 ...
-
国内外免费PHP开源建站程序一览(最全)
论坛社区:Discuz.PHPWind.ThinkSAAS.phpBB CMS内容管理:DedeCMS.PHPCMS.帝国CMS.齐博CMS.Drupal 企业建站:CmsEasy.KingCMS.P ...
-
Go语言初篇
Go语言初篇 目录 Go-开发环境 Go-语言基础 Go-标准库 Go-面向对象 Go-并发 Go-数据库 Go-web框架 Go语言开发文档:https://studygolang.com/pkgd ...
-
tomcat 配置本地路径映射
在tomcat的server.xml中的<host></host>标签内添加如: <Context path="/photo" reloadable= ...
-
html基础学习笔记1
<!DOCTYPE html> 声明为 HTML5 文档 <html> 元素是 HTML 页面的根元素 <head> 元素包含了文档的元(meta)数据,如 &l ...
-
关于使用的xshll和xftp中乱码咋办?
1.Xshll中 2.Xftp中同理都是一样的设置
-
第84讲:Scala中List和ListBuffer设计实现思考
今天来学习了scala中的list和ListBuffer scala list 内部很多操作是listbuffer做的,因为改变元素,listbuffer非常高效,tl是var类型的 ,但是他属于s ...
-
【Java】 大话数据结构(10) 查找算法(1)(顺序、二分、插值、斐波那契查找)
本文根据<大话数据结构>一书,实现了Java版的顺序查找.折半查找.插值查找.斐波那契查找. 注:为与书一致,记录均从下标为1开始. 顺序表查找 顺序查找 顺序查找(Sequential ...