poj 3522 Slim Span (最小生成树kruskal)

时间:2022-09-06 16:28:09

http://poj.org/problem?id=3522

Slim Span
Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 5666   Accepted: 2965

Description

Given an undirected weighted graph G, you should find one of spanning trees specified as follows.

The graph G is an ordered pair (VE), where V is a set of vertices {v1v2, …, vn} and E is a set of undirected edges {e1e2, …, em}. Each edge e ∈ E has its weight w(e).

A spanning tree T is a tree (a connected subgraph without cycles) which connects all the n vertices with n − 1 edges. The slimness of a spanning tree T is defined as the difference between the largest weight and the smallest weight among the n − 1 edges of T.

poj 3522 Slim Span (最小生成树kruskal) Figure 5: A graph G and the weights of the edges

For example, a graph G in Figure 5(a) has four vertices {v1v2v3v4} and five undirected edges {e1e2e3e4e5}. The weights of the edges are w(e1) = 3, w(e2) = 5, w(e3) = 6, w(e4) = 6, w(e5) = 7 as shown in Figure 5(b).

poj 3522 Slim Span (最小生成树kruskal) Figure 6: Examples of the spanning trees of G

There are several spanning trees for G. Four of them are depicted in Figure 6(a)~(d). The spanning tree Ta in Figure 6(a) has three edges whose weights are 3, 6 and 7. The largest weight is 7 and the smallest weight is 3 so that the slimness of the tree Ta is 4. The slimnesses of spanning trees TbTc and Td shown in Figure 6(b), (c) and (d) are 3, 2 and 1, respectively. You can easily see the slimness of any other spanning tree is greater than or equal to 1, thus the spanning tree Td in Figure 6(d) is one of the slimmest spanning trees whose slimness is 1.

Your job is to write a program that computes the smallest slimness.

Input

The input consists of multiple datasets, followed by a line containing two zeros separated by a space. Each dataset has the following format.

n m  
a1 b1 w1
   
am bm wm

Every input item in a dataset is a non-negative integer. Items in a line are separated by a space. n is the number of the vertices and m the number of the edges. You can assume 2 ≤ n ≤ 100 and 0 ≤ m ≤ n(n − 1)/2. ak andbk (k = 1, …, m) are positive integers less than or equal to n, which represent the two vertices vak and vbk connected by the kth edge ekwk is a positive integer less than or equal to 10000, which indicates the weight ofek. You can assume that the graph G = (VE) is simple, that is, there are no self-loops (that connect the same vertex) nor parallel edges (that are two or more edges whose both ends are the same two vertices).

Output

For each dataset, if the graph has spanning trees, the smallest slimness among them should be printed. Otherwise, −1 should be printed. An output should not contain extra characters.

Sample Input

4 5
1 2 3
1 3 5
1 4 6
2 4 6
3 4 7
4 6
1 2 10
1 3 100
1 4 90
2 3 20
2 4 80
3 4 40
2 1
1 2 1
3 0
3 1
1 2 1
3 3
1 2 2
2 3 5
1 3 6
5 10
1 2 110
1 3 120
1 4 130
1 5 120
2 3 110
2 4 120
2 5 130
3 4 120
3 5 110
4 5 120
5 10
1 2 9384
1 3 887
1 4 2778
1 5 6916
2 3 7794
2 4 8336
2 5 5387
3 4 493
3 5 6650
4 5 1422
5 8
1 2 1
2 3 100
3 4 100
4 5 100
1 5 50
2 5 50
3 5 50
4 1 150
0 0

Sample Output

1
20
0
-1
-1
1
0
1686
50

Source

 
【题解】:
 这道题简单的来说就是求一棵生成树使最大的边和最小的边差值最小。

  换个角度想就是用n-1条(n个点)数值相差不多的边,组成一棵生成树。 在生成树的prim和kruskal两个算法中很容易就会觉得kruskal的贪心思想会更加适合这道题。 kruskal算法一开始会对边进行排序,然后枚举最小的边。

【code】:
 /**
Judge Status:Accepted Memory:756K
Time:157MS Language:G++
Code Lenght:1613B Author:cj
*/ #include<iostream>
#include<stdio.h>
#include<string.h>
#include<algorithm> #define N 110
#define M 6000
#define INF 1000000000 using namespace std; struct Nod
{
int a,b,c;
}node[M]; int n,m,parent[N]; bool cmp(Nod a,Nod b)
{
return a.c<b.c;
} int findp(int a)
{
while(a!=parent[a])
{
a=parent[a];
}
return a;
} int merge(Nod nd)
{
int x = findp(nd.a);
int y = findp(nd.b);
if(x!=y)
{
parent[x]=y;
return nd.c;
}
return -;
} int kruskal(int id)
{
int i,cnt = ;
if(m-id+<n-) return INF; //少于n-1边的话 注定够不成生成树
for(i=;i<=N;i++) parent[i]=i;
int flag = ,mins
for(i=id;i<m;i++)
{
int temp = merge(node[i]);
if(temp!=-)
{
if(!flag) mins = temp; //记录最小边
flag = ;
cnt++;
}
if(cnt>=n-) return temp-mins; //只要找到n-1条边即可,返回最大边与最小边的差
}
if(cnt<n-) return INF; //构不成生成树
} int main()
{ while(~scanf("%d%d",&n,&m))
{
if(n==&&m==) break;
if(m==){puts("-1");continue;}
int i;
for(i=;i<m;i++)
{
scanf("%d%d%d",&node[i].a,&node[i].b,&node[i].c);
}
sort(node,node+m,cmp);
int ans = INF;
int temp = kruskal();
if(temp==INF)
{
puts("-1");
continue;
}
if(ans>temp) ans = temp;
for(i=;i<m;i++)
{
temp = kruskal(i); //枚举最小边
if(ans>temp) ans = temp;
}
printf("%d\n",ans);
}
return ;
}

poj 3522 Slim Span (最小生成树kruskal)的更多相关文章

  1. POJ 3522 Slim Span 最小生成树&comma;暴力 难度&colon;0

    kruskal思想,排序后暴力枚举从任意边开始能够组成的最小生成树 #include <cstdio> #include <algorithm> using namespace ...

  2. POJ 3522 Slim Span&lpar;极差最小生成树)

    Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 9546   Accepted: 5076 Descrip ...

  3. POJ 3522 ——Slim Span——————【最小生成树、最大边与最小边最小】

    Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 7102   Accepted: 3761 Descrip ...

  4. POJ 3522 Slim Span 最小差值生成树

    Slim Span Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://poj.org/problem?id=3522 Description Gi ...

  5. POJ 3522 - Slim Span - &lbrack;kruskal求MST&rsqb;

    题目链接:http://poj.org/problem?id=3522 Time Limit: 5000MS Memory Limit: 65536K Description Given an und ...

  6. POJ 3522 Slim Span &lpar;Kruskal枚举最小边&rpar;

    题意: 求出最小生成树中最大边与最小边差距的最小值. 分析: 排序,枚举最小边, 用最小边构造最小生成树, 没法构造了就退出 #include <stdio.h> #include &lt ...

  7. POJ 3522 Slim Span

    题目链接http://poj.org/problem?id=3522 kruskal+并查集,注意特殊情况比如1,0 .0,1.1,1 #include<cstdio> #include& ...

  8. POJ 3522 Slim Span 暴力枚举 &plus; 并查集

    http://poj.org/problem?id=3522 一开始做这个题的时候,以为复杂度最多是O(m)左右,然后一直不会.最后居然用了一个近似O(m^2)的62ms过了. 一开始想到排序,然后扫 ...

  9. Slim Span(Kruskal)

    题目链接:http://poj.org/problem?id=3522   Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Subm ...

随机推荐

  1. hiho一下20周 线段树的区间修改

    线段树的区间修改 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 对于小Ho表现出的对线段树的理解,小Hi表示挺满意的,但是满意就够了么?于是小Hi将问题改了改,又出给了 ...

  2. SQL Server 事务、异常和游标

    转自:http://www.cnblogs.com/hoojo/archive/2011/07/19/2110325.html Ø 事务 在数据库中有时候需要把多个步骤的指令当作一个整体来运行,这个整 ...

  3. vc6&period;0连接mysql数据库

    一.MySQL的安装 Mysql的安装去官网下载就可以...最新的是5.7版本.. 二.VC6.0的设置 (1)打开VC6.中选0 工具栏Tools菜单下的Options选项,在Directories ...

  4. jquery easyui DataGrid 动态的改变列显示的顺序

    $.extend($.fn.datagrid.methods,{ columnMoving: function(jq){ return jq.each(function(){ var target = ...

  5. spark1&period;1&period;0源码阅读-executor

    1. executor上执行launchTask def launchTask( context: ExecutorBackend, taskId: Long, taskName: String, s ...

  6. Java-集合框架总结

    集合框架: Java中的集合框架大类可分为Collection和Map:两者的区别: 1.Collection是单列集合:Map是双列集合 2.Collection中只有Set系列要求元素唯一:Map ...

  7. Kinect用体感来实现UI控件的点击

    用体感来实现UI控件的点击,如点击按钮. 做法:用一个图片表示左手手掌,图片位置追踪左手手掌移动,当手掌位于UI控件的矩形内时,握拳表示点击该控件. using UnityEngine; using ...

  8. ASP&period;NET Core 中间件(Middleware)详解

    什么是中间件(Middleware)? 中间件是组装到应用程序管道中以处理请求和响应的软件. 每个组件: 选择是否将请求传递给管道中的下一个组件. 可以在调用管道中的下一个组件之前和之后执行工作. 请 ...

  9. Android--图片轮播(banner)

    使用步骤 Step 1.依赖banner Gradle dependencies{ compile 'com.youth.banner:banner:1.4.10' //最新版本 } 或者引用本地li ...

  10. Linux 第五天

    网络命令 1)write 给在线用户发信息(需按Crtl+D保存结束,w命令可看在线用户) 语法:write 用户名 2)wall 发广播信息 英文原意:write all 语法:wall 信息 3) ...