多元线性回归模型中,如果所有特征一起上,容易造成过拟合使测试数据误差方差过大;因此减少不必要的特征,简化模型是减小方差的一个重要步骤。除了直接对特征筛选,来也可以进行特征压缩,减少某些不重要的特征系数,系数压缩趋近于0就可以认为舍弃该特征。
岭回归(Ridge Regression)和Lasso回归是在普通最小二乘线性回归的基础上加上正则项以对参数进行压缩惩罚。
首先,对于普通的最小二乘线性回归,它的代价函数是:
通过拟合系数β来使RSS最小。方法很简单,求偏导利用线性代数解方程组即可。
根据线性代数的理论可知,只要样本量合适,它就存在唯一解,也就是该模型的最优解。
这么做尽管使RSS达到了最小,它还是把所有的特征看作同样重要的程度来求解,并没有做任何特征选择,因此存在过拟合的可能。
岭回归在OLS回归模型的RSS上加上了惩罚项(l2范数),这样代价函数就成为:
λ是一个非负的调节参数,可以看到:当λ=0时,此时它与RSS一致,没有起到任何惩罚作用;当λ -> ∞时,它的惩罚项也就是无穷大,而为了使代价函数最小,只能压缩系数β趋近于0。
但是因为λ不可能为无穷大,二次项求偏导时总会保留变量本身,所以事实上它也不可能真正地将某个特征压缩为0。尽管系数较小可以有效减小方差,但依然留着一大长串特征会使模型不便于解释。这是岭回归的缺点。
lasso回归的正项则就把二次项改成了一次绝对值(l1范数),具体为:
一次项求导可以抹去变量本身,因此lasso回归的系数可以为0。这样可以起来真正的特征筛选效果。
无论对于岭回归还是lasso回归,本质都是通过调节λ来实现模型误差vs方差的平衡调整。
训练构建岭回归模型
> library(ISLR)
> Hitters = na.omit(Hitters)
> x = model.matrix(Salary~., Hitters)[,-1] # 构建回归设计矩阵
> y = Hitters$Salary
>
> library(glmnet)
> grid = 10^seq(10,-2,length = 100) # 生成100个λ值
> ridge.mod = glmnet(x,y,alpha = 0,lambda = grid) # alpha为0表示岭回归模型,为1表示lasso回归模型
>
> dim(coef(ridge.mod)) # 20*100的系数矩阵。20是19个特征+截距项,100是λ值
[1] 20 100
>
> # 显然可见l2范数越大,系数就越小
> ridge.mod$lambda[50]
[1] 11497.57
> coef(ridge.mod)[,50]
(Intercept) AtBat Hits HmRun Runs
407.356050200 0.036957182 0.138180344 0.524629976 0.230701523
RBI Walks Years CAtBat CHits
0.239841459 0.289618741 1.107702929 0.003131815 0.011653637
CHmRun CRuns CRBI CWalks LeagueN
0.087545670 0.023379882 0.024138320 0.025015421 0.085028114
DivisionW PutOuts Assists Errors NewLeagueN
-6.215440973 0.016482577 0.002612988 -0.020502690 0.301433531
> ridge.mod$lambda[60]
[1] 705.4802
> coef(ridge.mod)[,60]
(Intercept) AtBat Hits HmRun Runs
54.32519950 0.11211115 0.65622409 1.17980910 0.93769713
RBI Walks Years CAtBat CHits
0.84718546 1.31987948 2.59640425 0.01083413 0.04674557
CHmRun CRuns CRBI CWalks LeagueN
0.33777318 0.09355528 0.09780402 0.07189612 13.68370191
DivisionW PutOuts Assists Errors NewLeagueN
-54.65877750 0.11852289 0.01606037 -0.70358655 8.61181213
>
> # 输入一个新的λ,比如50,来预测系数
> predict(ridge.mod,s=50,type="coefficients")[1:20,]
(Intercept) AtBat Hits HmRun Runs
4.876610e+01 -3.580999e-01 1.969359e+00 -1.278248e+00 1.145892e+00
RBI Walks Years CAtBat CHits
8.038292e-01 2.716186e+00 -6.218319e+00 5.447837e-03 1.064895e-01
CHmRun CRuns CRBI CWalks LeagueN
6.244860e-01 2.214985e-01 2.186914e-01 -1.500245e-01 4.592589e+01
DivisionW PutOuts Assists Errors NewLeagueN
-1.182011e+02 2.502322e-01 1.215665e-01 -3.278600e+00 -9.496680e+00
>
> # 划分训练集和测试集
> set.seed(1)
> train = sample(1:nrow(x),nrow(x)/2)
> test = (-train)
> y.test = y[test]
>
> # 训练模型,并计算λ=4时的MSE
> ridge.mod = glmnet(x[train,],y[train],alpha = 0,lambda = grid,thresh = 1e-12)
> ridge.pred = predict(ridge.mod,s=4,newx = x[test,])
> mean((ridge.pred - y.test)^2)
[1] 101036.8
>
> # 增大λ为10的10^10,此时可视为各个特征都被压缩趋近为0,基本只剩截距项起作用
> ridge.pred = predict(ridge.mod,s=1e10,newx = x[test,])
> mean((ridge.pred - y.test)^2) # MSE更大
[1] 193253.1
>
> # 计算当λ=0也就是不加惩罚的最小二乘回归
> ridge.pred = predict(ridge.mod,s=0,newx = x[test,])
> mean((ridge.pred - y.test)^2) # MSE减小
[1] 114723.6
>
> ## 以上结果说明,如果λ选得不合适,结果不一定就比最小二乘回归模型更优。至于怎么选择λ,就用交叉验证法。
>
> set.seed(1)
> cv.out = cv.glmnet(x[train,],y[train],alpha=0)
> plot(cv.out)
> bestlam = cv.out$lambda.min
> bestlam # MSE最小的λ约为212
[1] 211.7416
>
> ridge.pred = predict(ridge.mod,s=bestlam,newx = x[test,])
> mean((ridge.pred - y.test)^2) # MSE减小
[1] 96015.51
>
> # 基于整个数据集构建岭回归模型
> out = glmnet(x,y,alpha = 0)
> predict(out,type = "coefficients",s=bestlam)[1:20,]
(Intercept) AtBat Hits HmRun Runs
9.88487157 0.03143991 1.00882875 0.13927624 1.11320781
RBI Walks Years CAtBat CHits
0.87318990 1.80410229 0.13074381 0.01113978 0.06489843
CHmRun CRuns CRBI CWalks LeagueN
0.45158546 0.12900049 0.13737712 0.02908572 27.18227535
DivisionW PutOuts Assists Errors NewLeagueN
-91.63411299 0.19149252 0.04254536 -1.81244470 7.21208390
>
> ## 可见岭回归模型还是19个特征,没有舍弃任何特征!
cv.out
的图如下:
当log(λ)为5.+时(log(bestlam)=5.3),MSE最小。
训练构建lasso回归模型
> lasso.mod = glmnet(x[train,],y[train],alpha = 1,lambda = grid)
> plot(lasso.mod) # 可见有些特征的系数确实可以为0
>
> set.seed(1)
> cv.out = cv.glmnet(x[train,],y[train],alpha =1)
> plot(cv.out)
> bestlam = cv.out$lambda.min
> bestlam # MSE最小的λ约为16
[1] 16.78016
> lasso.pred = predict(lasso.mod,s=bestlam,newx = x[test,])
> mean((lasso.pred-y.test)^2)
[1] 100743.4
>
> ## 可见lasso回归模型与岭回归模型MSE差不多,甚至岭回归模型的MSE更小一些。
>
> out = glmnet(x,y,alpha = 1,lambda = grid)
> lasso.coef = predict(out,type="coefficients",s=bestlam)[1:20,]
> lasso.coef
(Intercept) AtBat Hits HmRun Runs
18.5394844 0.0000000 1.8735390 0.0000000 0.0000000
RBI Walks Years CAtBat CHits
0.0000000 2.2178444 0.0000000 0.0000000 0.0000000
CHmRun CRuns CRBI CWalks LeagueN
0.0000000 0.2071252 0.4130132 0.0000000 3.2666677
DivisionW PutOuts Assists Errors NewLeagueN
-103.4845458 0.2204284 0.0000000 0.0000000 0.0000000
>
> ## 可见lasso回归模型中,有12个特征系数被压缩至0。相对于岭回归模型,这里的lasso回归模型以牺牲一部分的准确度为代价,换取更简洁的模型,增加模型的可解释性。这是lasso回归的优势。
多元线性回归模型的特征压缩:岭回归和Lasso回归的更多相关文章
-
SPSS--回归-多元线性回归模型案例解析
多元线性回归,主要是研究一个因变量与多个自变量之间的相关关系,跟一元回归原理差不多,区别在于影响因素(自变量)更多些而已,例如:一元线性回归方程 为: 毫无疑问,多元线性回归方程应该为: 上图中的 x ...
-
【机器学习】正则化的线性回归 —— 岭回归与Lasso回归
注:正则化是用来防止过拟合的方法.在最开始学习机器学习的课程时,只是觉得这个方法就像某种魔法一样非常神奇的改变了模型的参数.但是一直也无法对其基本原理有一个透彻.直观的理解.直到最近再次接触到这个概念 ...
-
吴裕雄 数据挖掘与分析案例实战(7)——岭回归与LASSO回归模型
# 导入第三方模块import pandas as pdimport numpy as npimport matplotlib.pyplot as pltfrom sklearn import mod ...
-
机器学习之五 正则化的线性回归-岭回归与Lasso回归
机器学习之五 正则化的线性回归-岭回归与Lasso回归 注:正则化是用来防止过拟合的方法.在最开始学习机器学习的课程时,只是觉得这个方法就像某种魔法一样非常神奇的改变了模型的参数.但是一直也无法对其基 ...
-
R语言解读多元线性回归模型
转载:http://blog.fens.me/r-multi-linear-regression/ 前言 本文接上一篇R语言解读一元线性回归模型.在许多生活和工作的实际问题中,影响因变量的因素可能不止 ...
-
多元线性回归 ——模型、估计、检验与预测
一.模型假设 传统多元线性回归模型 最重要的假设的原理为: 1. 自变量和因变量之间存在多元线性关系,因变量y能够被x1,x2-.x{k}完全地线性解释:2.不能被解释的部分则为纯粹的无法观测到的误差 ...
-
岭回归和lasso回归(转)
回归和分类是机器学习算法所要解决的两个主要问题.分类大家都知道,模型的输出值是离散值,对应着相应的类别,通常的简单分类问题模型输出值是二值的,也就是二分类问题.但是回归就稍微复杂一些,回归模型的输出值 ...
-
岭回归和Lasso回归以及norm1和norm2
norm代表的是距离,两个向量的距离:下图代表的就是p-norm,其实是对向量里面元素的一种运算: 最简单的距离计算(规范)是欧式距离(Euclidean distance),两点间距离是如下来算的, ...
-
岭回归与Lasso回归
线性回归的一般形式 过拟合问题及其解决方法 问题:以下面一张图片展示过拟合问题 解决方法:(1):丢弃一些对我们最终预测结果影响不大的特征,具体哪些特征需要丢弃可以通过PCA算法来实现:(2):使用正 ...
随机推荐
-
在WPF中使用依赖注入的方式创建视图
在WPF中使用依赖注入的方式创建视图 0x00 问题的产生 互联网时代桌面开发真是越来越少了,很多应用都转到了浏览器端和移动智能终端,相应的软件开发上的新技术应用到桌面开发的文章也很少.我之前主要做W ...
-
SQL Server数据库性能优化技巧
查询速度慢的原因很多,常见如下几种: 1.没有索引或者没有用到索引: 2.I/O吞吐量小,形成了瓶颈效应: 3.内存不足: 4.网络速度慢: 5.查询出的数据量过大: 6.锁或者死锁: 7.返回了不必 ...
-
数据集偏斜 - class skew problem - 以SVM松弛变量为例
原文 接下来要说的东西其实不是松弛变量本身,但由于是为了使用松弛变量才引入的,因此放在这里也算合适,那就是惩罚因子C.回头看一眼引入了松弛变量以后的优化问题: 注意其中C的位置,也可以回想一下C所起的 ...
-
Hive:Spark中如何实现将rdd结果插入到hive1.3.0表中
DataFrame写入hive API: registerTempTable函数是创建spark临时表 insertInto函数是向表中写入数据,可以看出此函数不能指定数据库和分区等信息,不可以直接进 ...
-
sap后台作业管理/sap打印管理
sap后台作业管理: 后台作业,主要用于运行需要处理大量数据,对交互没有要求的程序.个人认为,简单的创建,配置和监控后台作业没有什么难度.后台作业管理最为困难的解决方案的取舍,系统负载的调控.失控的后 ...
-
C语言错误: HEAP CORRUPTION DETECTED
程序源代码: //写文件两种方式(文本文件和二进制文件) #define _CRT_SECURE_NO_WARNINGS #include<stdio.h> #include<std ...
-
2层Folder删除问题,父文件夹删不掉
在此用的是由内向外删除.文件结构是:父文件夹/子文件夹/文件.用的是java1.6的java.io.FIle#deleteFile(); 在删除的过程中,发现,文件删除的时候没有问题,但是在子文件夹删 ...
-
AFNetworking 新版本3.0的迁移
AFNetworking在3.0版本中删除了基于 NSURLConnection API的所有支持.如果项目以前使用过这些API,那么我们需要升级到基于 NSURLSession 的API的AFNet ...
-
UWP:记录一下这几天踩到的坑
最近在玩微软的Desktop Bridge项目,遇到了如下几个坑: 1.文档中给的是js项目魔改的方法,其实C#项目也可以魔改加入UWP部分的,区别在于: 不用在项目文件里写<AppxGener ...
-
VMware ESXI6.0服务器安装
1.制作一个ESXI6.0的系统安装盘 2.服务器启动后加载VMware ESXi 6.0的ISO文件,开始安装. 3.ESXi引导装入程序,VMware ESXi引导过程,在屏幕上方显示的版本号.内 ...