本文是对pandas官方网站上《10minutes to pandas》的一个简单的翻译,原文在这里。这篇文章是对pandas的一个简单的介绍,详细的介绍请参考:cookbook 。习惯上,我们会按下面格式引入所需要的包:
一、创建对象
可以通过data structure intro setion 来查看有关该节内容的详细信息。
1、可以通过传递一个list对象来创建一个series,pandas会默认创建整型索引:
2、通过传递一个numpyarray,时间索引以及列标签来创建一个dataframe:
3、通过传递一个能够被转换成类似序列结构的字典对象来创建一个dataframe:
4、查看不同列的数据类型:
5、如果你使用的是ipython,使用tab自动补全功能会自动识别所有的属性以及自定义的列,下图中是所有能够被自动识别的属性的一个子集:
二、查看数据
详情请参阅:basics section
1、 查看frame中头部和尾部的行:
2、 显示索引、列和底层的numpy数据:
3、 describe()函数对于数据的快速统计汇总:
4、 对数据的转置:
5、 按轴进行排序
6、 按值进行排序
三、选择
虽然标准的python/numpy的选择和设置表达式都能够直接派上用场,但是作为工程使用的代码,我们推荐使用经过优化的pandas数据访问方式: .at,.iat,.loc,.iloc和.ix详情请参阅indexingand selecing data 和 multiindex/ advanced indexing。
l 获取
1、 选择一个单独的列,这将会返回一个series,等同于df.a:
2、 通过[]进行选择,这将会对行进行切片
l 通过标签选择
1、 使用标签来获取一个交叉的区域
2、 通过标签来在多个轴上进行选择
3、 标签切片
4、 对于返回的对象进行维度缩减
5、 获取一个标量
6、 快速访问一个标量(与上一个方法等价)
l 通过位置选择
1、 通过传递数值进行位置选择(选择的是行)
2、 通过数值进行切片,与numpy/python中的情况类似
3、 通过指定一个位置的列表,与numpy/python中的情况类似
4、 对行进行切片
5、 对列进行切片
6、 获取特定的值
l 布尔索引
1、 使用一个单独列的值来选择数据:
2、 使用where操作来选择数据:
3、 使用isin()方法来过滤:
l 设置
1、 设置一个新的列:
2、 通过标签设置新的值:
3、 通过位置设置新的值:
4、 通过一个numpy数组设置一组新值:
上述操作结果如下:
5、 通过where操作来设置新的值:
四、缺失值处理
在pandas中,使用np.nan来代替缺失值,这些值将默认不会包含在计算中,详情请参阅:missing data section。
1、 reindex()方法可以对指定轴上的索引进行改变/增加/删除操作,这将返回原始数据的一个拷贝:、
2、 去掉包含缺失值的行:
3、 对缺失值进行填充:
4、 对数据进行布尔填充:
五、相关操作
详情请参与basic section on binary ops
l 统计(相关操作通常情况下不包括缺失值)
1、 执行描述性统计:
2、 在其他轴上进行相同的操作:
3、 对于拥有不同维度,需要对齐的对象进行操作。pandas会自动的沿着指定的维度进行广播:
l apply
1、 对数据应用函数:
l 直方图
具体请参照:histogrammingand discretization
l 字符串方法
series对象在其str属性中配备了一组字符串处理方法,可以很容易的应用到数组中的每个元素,如下段代码所示。更多详情请参考:vectorized string methods.
六、合并
pandas提供了大量的方法能够轻松的对series,dataframe和panel对象进行各种符合各种逻辑关系的合并操作。具体请参阅:mergingsection
l concat
l join 类似于sql类型的合并,具体请参阅:databasestyle joining
l append 将一行连接到一个dataframe上,具体请参阅appending:
七、分组
对于”group by”操作,我们通常是指以下一个或多个操作步骤:
l (splitting)按照一些规则将数据分为不同的组;
l (applying)对于每组数据分别执行一个函数;
l (combining)将结果组合到一个数据结构中;
详情请参阅:groupingsection
1、 分组并对每个分组执行sum函数:
2、 通过多个列进行分组形成一个层次索引,然后执行函数:
八、reshaping
详情请参阅hierarchicalindexing和reshaping。
l stack
l 数据透视表,详情请参阅:pivottables.
可以从这个数据中轻松的生成数据透视表:
九、时间序列
pandas在对频率转换进行重新采样时拥有简单、强大且高效的功能(如将按秒采样的数据转换为按5分钟为单位进行采样的数据)。这种操作在金融领域非常常见。具体参考:timeseries section。
1、 时区表示:
2、 时区转换:
3、 时间跨度转换:
4、 时期和时间戳之间的转换使得可以使用一些方便的算术函数。
十、categorical
从0.15版本开始,pandas可以在dataframe中支持categorical类型的数据,详细介绍参看:和apidocumentation。
1、 将原始的grade转换为categorical数据类型:
2、 将categorical类型数据重命名为更有意义的名称:
3、 对类别进行重新排序,增加缺失的类别:
4、 排序是按照categorical的顺序进行的而不是按照字典顺序进行:
5、 对categorical列进行排序时存在空的类别:
十一、画图
具体文档参看:plottingdocs
对于dataframe来说,plot是一种将所有列及其标签进行绘制的简便方法:
十二、导入和保存数据
l csv,参考:writingto a csv file
1、 写入csv文件:
2、 从csv文件中读取:
l hdf5,参考:hdfstores
1、 写入hdf5存储:
2、 从hdf5存储中读取:
l excel,参考:msexcel
1、 写入excel文件:
2、 从excel文件中读取:
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:https://www.cnblogs.com/chaosimple/p/4153083.html