本文记录一下TensorFLow的几种图片读取方法,官方文档有较为全面的介绍。
1.使用gfile读图片,decode输出是Tensor,eval后是ndarray
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
|
import matplotlib.pyplot as plt
import tensorflow as tf
import numpy as np
print (tf.__version__)
image_raw = tf.gfile.FastGFile( 'test/a.jpg' , 'rb' ).read() #bytes
img = tf.image.decode_jpeg(image_raw) #Tensor
#img2 = tf.image.convert_image_dtype(img, dtype = tf.uint8)
with tf.Session() as sess:
print ( type (image_raw)) # bytes
print ( type (img)) # Tensor
#print(type(img2))
print ( type (img. eval ())) # ndarray !!!
print (img. eval ().shape)
print (img. eval ().dtype)
# print(type(img2.eval()))
# print(img2.eval().shape)
# print(img2.eval().dtype)
plt.figure( 1 )
plt.imshow(img. eval ())
plt.show()
|
输出为:
1.3.0
<class 'bytes'>
<class 'tensorflow.python.framework.ops.Tensor'>
<class 'numpy.ndarray'>
(666, 1000, 3)
uint8
图片显示(略)
2.使用WholeFileReader输入queue,decode输出是Tensor,eval后是ndarray
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
|
import tensorflow as tf
import os
import matplotlib.pyplot as plt
for root, dirs, files in os.walk(file_dir): #模块os中的walk()函数遍历文件夹下所有的文件
print (root) #当前目录路径
print (dirs) #当前路径下所有子目录
print (files) #当前路径下所有非目录子文件
def file_name2(file_dir): #特定类型的文件
L = []
for root, dirs, files in os.walk(file_dir):
for file in files:
if os.path.splitext( file )[ 1 ] = = '.jpg' :
L.append(os.path.join(root, file ))
return L
path = file_name2( 'test' )
#以下参考http://www.zzvips.com/article/131265.html (十图详解TensorFlow数据读取机制)
#path2 = tf.train.match_filenames_once(path)
file_queue = tf.train.string_input_producer(path, shuffle = True , num_epochs = 2 ) #创建输入队列
image_reader = tf.WholeFileReader()
key, image = image_reader.read(file_queue)
image = tf.image.decode_jpeg(image)
with tf.Session() as sess:
# coord = tf.train.Coordinator() #协同启动的线程
# threads = tf.train.start_queue_runners(sess=sess, coord=coord) #启动线程运行队列
# coord.request_stop() #停止所有的线程
# coord.join(threads)
tf.local_variables_initializer().run()
threads = tf.train.start_queue_runners(sess = sess)
#print (type(image))
#print (type(image.eval()))
#print(image.eval().shape)
for _ in path + path:
plt.figure
plt.imshow(image. eval ())
plt.show()
|
3.使用read_file,decode输出是Tensor,eval后是ndarray
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
|
import matplotlib.pyplot as plt
import tensorflow as tf
import numpy as np
print (tf.__version__)
image_value = tf.read_file( 'test/a.jpg' )
img = tf.image.decode_jpeg(image_value, channels = 3 )
with tf.Session() as sess:
print ( type (image_value)) # bytes
print ( type (img)) # Tensor
#print(type(img2))
print ( type (img. eval ())) # ndarray !!!
print (img. eval ().shape)
print (img. eval ().dtype)
# print(type(img2.eval()))
# print(img2.eval().shape)
# print(img2.eval().dtype)
plt.figure( 1 )
plt.imshow(img. eval ())
plt.show()
|
输出是:
1.3.0
<class 'tensorflow.python.framework.ops.Tensor'>
<class 'tensorflow.python.framework.ops.Tensor'>
<class 'numpy.ndarray'>
(666, 1000, 3)
uint8
显示图片(略)
4.TFRecords:
有空再看。
如果图片是根据分类放在不同的文件夹下,那么可以直接使用如下代码:
http://www.zzvips.com/article/131256.html
http://www.zzvips.com/article/131260.html
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:http://blog.csdn.net/wayne2019/article/details/77884478