使用python语言,实现求特征选择的信息增益,可以同时满足特征中有连续型和二值离散型属性的情况。
师兄让我做一个特征选择的代码,我在网上找了一下,大部分都是用来求离散型属性的信息益益,但是我的数据是同时包含二值离散型和连续型属性的,所以这里实现了一下。
代码块
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
|
import numpy as np
import math
class IG():
def __init__( self ,X,y):
X = np.array(X)
n_feature = np.shape(X)[ 1 ]
n_y = len (y)
orig_H = 0
for i in set (y):
orig_H + = - (y.count(i) / n_y) * math.log(y.count(i) / n_y)
condi_H_list = []
for i in range (n_feature):
feature = X[:,i]
sourted_feature = sorted (feature)
threshold = [(sourted_feature[inde - 1 ] + sourted_feature[inde]) / 2 for inde in range ( len (feature)) if inde ! = 0 ]
thre_set = set (threshold)
if float ( max (feature)) in thre_set:
thre_set.remove( float ( max (feature)))
if min (feature) in thre_set:
thre_set.remove( min (feature))
pre_H = 0
for thre in thre_set:
lower = [y[s] for s in range ( len (feature)) if feature[s] < thre]
highter = [y[s] for s in range ( len (feature)) if feature[s] > thre]
H_l = 0
for l in set (lower):
H_l + = - (lower.count(l) / len (lower)) * math.log(lower.count(l) / len (lower))
H_h = 0
for h in set (highter):
H_h + = - (highter.count(h) / len (highter)) * math.log(highter.count(h) / len (highter))
temp_condi_H = len (lower) / n_y * H_l + len (highter) / n_y * H_h
condi_H = orig_H - temp_condi_H
pre_H = max (pre_H,condi_H)
condi_H_list.append(pre_H)
self .IG = condi_H_list
def getIG( self ):
return self .IG
if __name__ = = "__main__" :
X = [[ 1 , 0 , 0 , 1 ],
[ 0 , 1 , 1 , 1 ],
[ 0 , 0 , 1 , 0 ]]
y = [ 0 , 0 , 1 ]
print (IG(X,y).getIG())
|
输出结果为:
[0.17441604792151594, 0.17441604792151594, 0.17441604792151594, 0.6365141682948128]
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/fei13971414170/article/details/80010007