转 Caffe学习系列(12):训练和测试自己的图片

时间:2021-12-19 02:04:14

学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中。因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测试模型的整个流程。

一、准备数据

有条件的同学,可以去imagenet的官网http://www.image-net.org/download-images,下载imagenet图片来训练。但是我没有下载,一个原因是注册账号的时候,验证码始终出不来(听说是google网站的验证码,而我是上不了google的)。第二个原因是数据太大了。。。

我去网上找了一些其它的图片来代替,共有500张图片,分为大巴车、恐龙、大象、鲜花和马五个类,每个类100张。需要的同学,可到我的网盘下载:http://pan.baidu.com/s/1nuqlTnN

编号分别以3,4,5,6,7开头,各为一类。我从其中每类选出20张作为测试,其余80张作为训练。因此最终训练图片400张,测试图片100张,共5类。我将图片放在caffe根目录下的data文件夹下面。即训练图片目录:data/re/train/ ,测试图片目录: data/re/test/

二、转换为lmdb格式

具体的转换过程,可参见我的前一篇博文:Caffe学习系列(11):图像数据转换成db(leveldb/lmdb)文件

首先,在examples下面创建一个myfile的文件夹,来用存放配置文件和脚本文件。然后编写一个脚本create_filelist.sh,用来生成train.txt和test.txt清单文件

# sudo mkdir examples/myfile
# sudo vi examples/myfile/create_filelist.sh

编辑此文件,写入如下代码,并保存

转 Caffe学习系列(12):训练和测试自己的图片
#!/usr/bin/env sh
DATA=data/re/
MY=examples/myfile
echo "Create train.txt..."
rm -rf $MY/train.txt
for i in 3 4 5 6 7
do
find $DATA/train -name $i*.jpg | cut -d '/' -f4-5 | sed "s/$/ $i/">>$MY/train.txt
done
echo "Create test.txt..."
rm -rf $MY/test.txt
for i in 3 4 5 6 7
do
find $DATA/test -name $i*.jpg | cut -d '/' -f4-5 | sed "s/$/ $i/">>$MY/test.txt
done
echo "All done"
转 Caffe学习系列(12):训练和测试自己的图片

然后,运行此脚本

# sudo sh examples/myfile/create_filelist.sh

成功的话,就会在examples/myfile/ 文件夹下生成train.txt和test.txt两个文本文件,里面就是图片的列表清单。

转 Caffe学习系列(12):训练和测试自己的图片

接着再编写一个脚本文件,调用convert_imageset命令来转换数据格式。

# sudo vi examples/myfile/create_lmdb.sh

插入:

转 Caffe学习系列(12):训练和测试自己的图片
#!/usr/bin/env sh
MY=examples/myfile echo "Create train lmdb.."
rm -rf $MY/img_train_lmdb
build/tools/convert_imageset \
--shuffle \
--resize_height=256 \
--resize_width=256 \
/home/xxx/caffe/data/re/ \
$MY/train.txt \
$MY/img_train_lmdb echo "Create test lmdb.."
rm -rf $MY/img_test_lmdb
build/tools/convert_imageset \
--shuffle \
--resize_width=256 \
--resize_height=256 \
/home/xxx/caffe/data/re/ \
$MY/test.txt \
$MY/img_test_lmdb echo "All Done.."
转 Caffe学习系列(12):训练和测试自己的图片

因为图片大小不一,因此我统一转换成256*256大小。运行成功后,会在 examples/myfile下面生成两个文件夹img_train_lmdb和img_test_lmdb,分别用于保存图片转换后的lmdb文件。

转 Caffe学习系列(12):训练和测试自己的图片

三、计算均值并保存

图片减去均值再训练,会提高训练速度和精度。因此,一般都会有这个操作。

caffe程序提供了一个计算均值的文件compute_image_mean.cpp,我们直接使用就可以了

# sudo build/tools/compute_image_mean examples/myfile/img_train_lmdb examples/myfile/mean.binaryproto
compute_image_mean带两个参数,第一个参数是lmdb训练数据位置,第二个参数设定均值文件的名字及保存路径。
运行成功后,会在 examples/myfile/ 下面生成一个mean.binaryproto的均值文件。

四、创建模型并编写配置文件

模型就用程序自带的caffenet模型,位置在 models/bvlc_reference_caffenet/文件夹下, 将需要的两个配置文件,复制到myfile文件夹内

# sudo cp models/bvlc_reference_caffenet/solver.prototxt examples/myfile/
# sudo cp models/bvlc_reference_caffenet/train_val.prototxt examples/myfile/

修改其中的solver.prototxt

# sudo vi examples/myfile/solver.prototxt
转 Caffe学习系列(12):训练和测试自己的图片
net: "examples/myfile/train_val.prototxt"
test_iter: 2
test_interval: 50
base_lr: 0.001
lr_policy: "step"
gamma: 0.1
stepsize: 100
display: 20
max_iter: 500
momentum: 0.9
weight_decay: 0.005
solver_mode: GPU
转 Caffe学习系列(12):训练和测试自己的图片

100个测试数据,batch_size为50,因此test_iter设置为2,就能全cover了。在训练过程中,调整学习率,逐步变小。

修改train_val.protxt,只需要修改两个阶段的data层就可以了,其它可以不用管。

转 Caffe学习系列(12):训练和测试自己的图片
name: "CaffeNet"
layer {
name: "data"
type: "Data"
top: "data"
top: "label"
include {
phase: TRAIN
}
transform_param {
mirror: true
crop_size: 227
mean_file: "examples/myfile/mean.binaryproto"
}
data_param {
source: "examples/myfile/img_train_lmdb"
batch_size: 256
backend: LMDB
}
}
layer {
name: "data"
type: "Data"
top: "data"
top: "label"
include {
phase: TEST
}
transform_param {
mirror: false
crop_size: 227
mean_file: "examples/myfile/mean.binaryproto"
}
data_param {
source: "examples/myfile/img_test_lmdb"
batch_size: 50
backend: LMDB
}
}
转 Caffe学习系列(12):训练和测试自己的图片

实际上就是修改两个data layer的mean_file和source这两个地方,其它都没有变化 。

五、训练和测试

如果前面都没有问题,数据准备好了,配置文件也配置好了,这一步就比较简单了。

# sudo build/tools/caffe train -solver examples/myfile/solver.prototxt

运行时间和最后的精确度,会根据机器配置,参数设置的不同而不同。我的是gpu+cudnn运行500次,大约8分钟,精度为95%。

转 Caffe学习系列(12):训练和测试自己的图片