使用wait()与notify()实现线程间协作
1. wait()与notify()/notifyAll()
调用sleep()和yield()的时候锁并没有被释放,而调用wait()将释放锁。这样另一个任务(线程)可以获得当前对象的锁,从而进入它的synchronized方法中。可以通过notify()/notifyAll(),或者时间到期,从wait()中恢复执行。
只能在同步控制方法或同步块中调用wait()、notify()和notifyAll()。如果在非同步的方法里调用这些方法,在运行时会抛出IllegalMonitorStateException异常。
2.模拟单个线程对多个线程的唤醒
模拟线程之间的协作。Game类有2个同步方法prepare()和go()。标志位start用于判断当前线程是否需要wait()。Game类的实例首先启动所有的Athele类实例,使其进入wait()状态,在一段时间后,改变标志位并notifyAll()所有处于wait状态的Athele线程。
Game.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
|
package concurrency;
import java.util.Collection;
import java.util.Collections;
import java.util.HashSet;
import java.util.Iterator;
import java.util.Set;
class Athlete implements Runnable {
private final int id;
private Game game;
public Athlete( int id, Game game) {
this .id = id;
this .game = game;
}
public boolean equals(Object o) {
if (!(o instanceof Athlete))
return false ;
Athlete athlete = (Athlete) o;
return id == athlete.id;
}
public String toString() {
return "Athlete<" + id + ">" ;
}
public int hashCode() {
return new Integer(id).hashCode();
}
public void run() {
try {
game.prepare( this );
} catch (InterruptedException e) {
System.out.println( this + " quit the game" );
}
}
}
public class Game implements Runnable {
private Set<Athlete> players = new HashSet<Athlete>();
private boolean start = false ;
public void addPlayer(Athlete one) {
players.add(one);
}
public void removePlayer(Athlete one) {
players.remove(one);
}
public Collection<Athlete> getPlayers() {
return Collections.unmodifiableSet(players);
}
public void prepare(Athlete athlete) throws InterruptedException {
System.out.println(athlete + " ready!" );
synchronized ( this ) {
while (!start)
wait();
if (start)
System.out.println(athlete + " go!" );
}
}
public synchronized void go() {
notifyAll();
}
public void ready() {
Iterator<Athlete> iter = getPlayers().iterator();
while (iter.hasNext())
new Thread(iter.next()).start();
}
public void run() {
start = false ;
System.out.println( "Ready......" );
System.out.println( "Ready......" );
System.out.println( "Ready......" );
ready();
start = true ;
System.out.println( "Go!" );
go();
}
public static void main(String[] args) {
Game game = new Game();
for ( int i = 0 ; i < 10 ; i++)
game.addPlayer( new Athlete(i, game));
new Thread(game).start();
}
}
|
结果:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
|
Ready......
Ready......
Ready......
Athlete<0> ready!
Athlete<1> ready!
Athlete<2> ready!
Athlete<3> ready!
Athlete<4> ready!
Athlete<5> ready!
Athlete<6> ready!
Athlete<7> ready!
Athlete<8> ready!
Athlete<9> ready!
Go!
Athlete<9> go!
Athlete<8> go!
Athlete<7> go!
Athlete<6> go!
Athlete<5> go!
Athlete<4> go!
Athlete<3> go!
Athlete<2> go!
Athlete<1> go!
Athlete<0> go!
|
3.模拟忙等待过程
MyObject类的实例是被观察者,当观察事件发生时,它会通知一个Monitor类的实例(通知的方式是改变一个标志位)。而此Monitor类的实例是通过忙等待来不断的检查标志位是否变化。
BusyWaiting.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
|
import java.util.concurrent.TimeUnit;
class MyObject implements Runnable {
private Monitor monitor;
public MyObject(Monitor monitor) {
this .monitor = monitor;
}
public void run() {
try {
TimeUnit.SECONDS.sleep( 3 );
System.out.println( "i'm going." );
monitor.gotMessage();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
class Monitor implements Runnable {
private volatile boolean go = false ;
public void gotMessage() throws InterruptedException {
go = true ;
}
public void watching() {
while (go == false )
;
System.out.println( "He has gone." );
}
public void run() {
watching();
}
}
public class BusyWaiting {
public static void main(String[] args) {
Monitor monitor = new Monitor();
MyObject o = new MyObject(monitor);
new Thread(o).start();
new Thread(monitor).start();
}
}
|
结果:
1
2
|
i'm going.
He has gone.
|
4.使用wait()与notify()改写上面的例子
下面的例子通过wait()来取代忙等待机制,当收到通知消息时,notify当前Monitor类线程。
Wait.java
1
2
3
4
5
6
7
8
9
10
|
package concurrency.wait;
import java.util.concurrent.TimeUnit;
class MyObject implements Runnable {
private Monitor monitor;
public MyObject(Monitor monitor) {
this .monitor = monitor;
}
|
定时启动线程
这里提供两种在指定时间后启动线程的方法。一是通过java.util.concurrent.DelayQueue实现;二是通过java.util.concurrent.ScheduledThreadPoolExecutor实现。
1. java.util.concurrent.DelayQueue
类DelayQueue是一个*阻塞队列,只有在延迟期满时才能从中提取元素。它接受实现Delayed接口的实例作为元素。
<<interface>>Delayed.java
1
2
3
4
5
|
package java.util.concurrent;
import java.util.*;
public interface Delayed extends Comparable<Delayed> {
long getDelay(TimeUnit unit);
}
|
getDelay()返回与此对象相关的剩余延迟时间,以给定的时间单位表示。此接口的实现必须定义一个 compareTo 方法,该方法提供与此接口的 getDelay 方法一致的排序。
DelayQueue队列的头部是延迟期满后保存时间最长的 Delayed 元素。当一个元素的getDelay(TimeUnit.NANOSECONDS) 方法返回一个小于等于 0 的值时,将发生到期。
2.设计带有时间延迟特性的队列
类DelayedTasker维护一个DelayQueue<DelayedTask> queue,其中DelayedTask实现了Delayed接口,并由一个内部类定义。外部类和内部类都实现Runnable接口,对于外部类来说,它的run方法是按定义的时间先后取出队列中的任务,而这些任务即内部类的实例,内部类的run方法定义每个线程具体逻辑。
这个设计的实质是定义了一个具有时间特性的线程任务列表,而且该列表可以是任意长度的。每次添加任务时指定启动时间即可。
DelayedTasker.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
|
package com.zj.timedtask;
import static java.util.concurrent.TimeUnit.SECONDS;
import static java.util.concurrent.TimeUnit.NANOSECONDS;
import java.util.Collection;
import java.util.Collections;
import java.util.Random;
import java.util.concurrent.DelayQueue;
import java.util.concurrent.Delayed;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.TimeUnit;
public class DelayedTasker implements Runnable {
DelayQueue<DelayedTask> queue = new DelayQueue<DelayedTask>();
public void addTask(DelayedTask e) {
queue.put(e);
}
public void removeTask() {
queue.poll();
}
public Collection<DelayedTask> getAllTasks() {
return Collections.unmodifiableCollection(queue);
}
public int getTaskQuantity() {
return queue.size();
}
public void run() {
while (!queue.isEmpty())
try {
queue.take().run();
} catch (InterruptedException e) {
System.out.println( "Interrupted" );
}
System.out.println( "Finished DelayedTask" );
}
public static class DelayedTask implements Delayed, Runnable {
private static int counter = 0 ;
private final int id = counter++;
private final int delta;
private final long trigger;
public DelayedTask( int delayInSeconds) {
delta = delayInSeconds;
trigger = System.nanoTime() + NANOSECONDS.convert(delta, SECONDS);
}
public long getDelay(TimeUnit unit) {
return unit.convert(trigger - System.nanoTime(), NANOSECONDS);
}
public int compareTo(Delayed arg) {
DelayedTask that = (DelayedTask) arg;
if (trigger < that.trigger)
return - 1 ;
if (trigger > that.trigger)
return 1 ;
return 0 ;
}
public void run() {
//run all that you want to do
System.out.println( this );
}
public String toString() {
return "[" + delta + "s]" + "Task" + id;
}
}
public static void main(String[] args) {
Random rand = new Random();
ExecutorService exec = Executors.newCachedThreadPool();
DelayedTasker tasker = new DelayedTasker();
for ( int i = 0 ; i < 10 ; i++)
tasker.addTask( new DelayedTask(rand.nextInt( 5 )));
exec.execute(tasker);
exec.shutdown();
}
}
|
结果:
1
2
3
4
5
6
7
8
9
10
11
|
[0s]Task 1
[0s]Task 2
[0s]Task 3
[1s]Task 6
[2s]Task 5
[3s]Task 8
[4s]Task 0
[4s]Task 4
[4s]Task 7
[4s]Task 9
Finished DelayedTask
|
3. java.util.concurrent.ScheduledThreadPoolExecutor
该类可以另行安排在给定的延迟后运行任务(线程),或者定期(重复)执行任务。在构造子中需要知道线程池的大小。最主要的方法是:
[1] schedule
public ScheduledFuture<?> schedule(Runnable command, long delay,TimeUnit unit)
创建并执行在给定延迟后启用的一次性操作。
指定者:
-接口 ScheduledExecutorService 中的 schedule;
参数:
-command - 要执行的任务 ;
-delay - 从现在开始延迟执行的时间 ;
-unit - 延迟参数的时间单位 ;
返回:
-表示挂起任务完成的 ScheduledFuture,并且其 get() 方法在完成后将返回 null。
[2] scheduleAtFixedRate
public ScheduledFuture<?> scheduleAtFixedRate(
Runnable command,long initialDelay,long period,TimeUnit unit)
创建并执行一个在给定初始延迟后首次启用的定期操作,后续操作具有给定的周期;也就是将在 initialDelay 后开始执行,然后在 initialDelay+period 后执行,接着在 initialDelay + 2 * period 后执行,依此类推。如果任务的任何一个执行遇到异常,则后续执行都会被取消。否则,只能通过执行程序的取消或终止方法来终止该任务。如果此任务的任何一个执行要花费比其周期更长的时间,则将推迟后续执行,但不会同时执行。
指定者:
-接口 ScheduledExecutorService 中的 scheduleAtFixedRate;
参数:
-command - 要执行的任务 ;
-initialDelay - 首次执行的延迟时间 ;
-period - 连续执行之间的周期 ;
-unit - initialDelay 和 period 参数的时间单位 ;
返回:
-表示挂起任务完成的 ScheduledFuture,并且其 get() 方法在取消后将抛出异常。
4.设计带有时间延迟特性的线程执行者
类ScheduleTasked关联一个ScheduledThreadPoolExcutor,可以指定线程池的大小。通过schedule方法知道线程及延迟的时间,通过shutdown方法关闭线程池。对于具体任务(线程)的逻辑具有一定的灵活性(相比前一中设计,前一种设计必须事先定义线程的逻辑,但可以通过继承或装饰修改线程具体逻辑设计)。
ScheduleTasker.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
|
package com.zj.timedtask;
import java.util.concurrent.ScheduledThreadPoolExecutor;
import java.util.concurrent.TimeUnit;
public class ScheduleTasker {
private int corePoolSize = 10 ;
ScheduledThreadPoolExecutor scheduler;
public ScheduleTasker() {
scheduler = new ScheduledThreadPoolExecutor(corePoolSize);
}
public ScheduleTasker( int quantity) {
corePoolSize = quantity;
scheduler = new ScheduledThreadPoolExecutor(corePoolSize);
}
public void schedule(Runnable event, long delay) {
scheduler.schedule(event, delay, TimeUnit.SECONDS);
}
public void shutdown() {
scheduler.shutdown();
}
public static void main(String[] args) {
ScheduleTasker tasker = new ScheduleTasker();
tasker.schedule( new Runnable() {
public void run() {
System.out.println( "[1s]Task 1" );
}
}, 1 );
tasker.schedule( new Runnable() {
public void run() {
System.out.println( "[2s]Task 2" );
}
}, 2 );
tasker.schedule( new Runnable() {
public void run() {
System.out.println( "[4s]Task 3" );
}
}, 4 );
tasker.schedule( new Runnable() {
public void run() {
System.out.println( "[10s]Task 4" );
}
}, 10 );
tasker.shutdown();
}
}
|
结果:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
[1s]Task 1
[2s]Task 2
[4s]Task 3
[10s]Task 4
public void run() {
try {
TimeUnit.SECONDS.sleep(3);
System.out.println("i'm going.");
monitor.gotMessage();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
|
class Monitor implements Runnable {
private volatile boolean go = false ;
public synchronized void gotMessage() throws InterruptedException {
go = true ;
notify();
}
public synchronized void watching() throws InterruptedException {
while (go == false )
wait();
System.out.println( "He has gone." );
}
public void run() {
try {
watching();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
public class Wait {
public static void main(String[] args) {
Monitor monitor = new Monitor();
MyObject o = new MyObject(monitor);
new Thread(o).start();
new Thread(monitor).start();
}
}
|
结果:
1
2
|
i'm going.
He has gone.
|