Up and Down the Tree CodeForces - 1065F (树形dp)

时间:2022-06-02 02:45:01

链接

题目大意:给定$n$结点树, 假设当前在结点$v$, 有两种操作

$(1)$移动到$v$的子树内任意一个叶子上

$(2)$若$v$为叶子, 可以移动到距离$v$不超过$k$的祖先上

初始在结点$1$(若结点$1$只有$1$个儿子时,结点$1$不能看做叶子), 求经过若干次操作后, 最多可以访问到的叶子数

记$f_1[x]$为初始在$x$,在$x$子树运动,最后不用返回父亲的最大值

$f_0[x]$为必须返回父亲时的最大值

就有$f_1[x]=\max(f_1[y]-f_0[y])+\sum{f_0[y]},其中y$为$x$的儿子, 答案即为$f[1]$

求$f_0[x]$的话有个技巧, 直接计算$f_0[y]$的和, 返回时将无贡献的$f_0[x]$清零即可

#include <iostream>
#include <algorithm>
#include <math.h>
#include <cstdio>
#include <vector>
#define REP(i,a,n) for(int i=a;i<=n;++i)
#define pb push_back
using namespace std; const int N = 1e6+10, INF = 0x3f3f3f3f;
int n, k, fa[N];
vector<int> g[N];
int dp[2][N], dis[N]; void dfs(int x) {
dis[x] = INF;
for (int y:g[x]) {
dfs(y);
dis[x] = min(dis[x],dis[y]+1);
dp[1][x] += dp[1][y];
dp[0][x] = max(dp[0][x],dp[0][y]-dp[1][y]);
}
dp[0][x] += dp[1][x];
if (dis[x]==INF) dis[x]=0,dp[0][x]=dp[1][x]=1;
else if (dis[x]>=k) dp[1][x]=0;
} int main() {
scanf("%d%d", &n, &k);
REP(i,2,n) scanf("%d",fa+i),g[fa[i]].pb(i);
dfs(1);
printf("%d\n", dp[0][1]);
}