海伦收集约会数据巳经有了一段时间,她把这些数据存放在文本文件datingTestSet.txt中,每个样本数据占据一行,总共有 1000 行。海伦的样本主要包含以下 3 种特征:
1. 每年获得的飞行常客里程数
2. 玩视频游戏所耗时间百分比
3. 每周消费的冰淇淋公升数
在将上述特征数据输人到分类器之前,必须将待处理数据的格式改变为分类器可以接受的格式。在 kNN.py 中创建名为 file2matrix的函数,以此来处理输人格式问题。该函数的输人为文件名字符串输出为训练样本矩阵和类标签向量,整体程序如下:
1. 读取测试数据文件
# 读取测试数据文件
def read_file(filename):
datafile = open(filename)
lines = datafile.readlines();
length = len(lines)
marix = zeros((length,))
classLabelVector = []
index =
for line in lines:
line = line.rstrip()
words = line.split("\t")
marix[index,:]=words[:]
classLabelVector.append(float(words[-]))
index = index +
return marix,classLabelVector
2. 测试数据归一化
在处理不同取值范围的特征值时,我们通常采用的方法是将数值归一化,如将取值范围处理为0到1或者-1到1之间,下面的公式可以将任意取值范围的特征值转化为0到1区间内的值 :newValue = (oldValue-min)/(max-min),具体程序如下:
def autoNorm(dataSet):
minVals = dataSet.min()
maxVals = dataSet.max()
range = maxVals - minVals
normDataSet = zeros(shape(dataSet))
m = dataSet.shape[]
normDataSet = dataSet - tile(minVals,(m,))
normDataSet = normDataSet/tile(range,(m,))
return normDataSet,range,minVals
3. 分类器
主要是利用测试数据对前面创建的分类器进行验证,测试分类器的效果
def classify(inX,dataSet,labels,k):
dataSetSize = dataSet.shape[]
diffMat = tile(inX,(dataSetSize,))-dataSet
sqDiffMat = diffMat**
sqDistances = sqDiffMat.sum(axis=)
distances = sqDistances**0.5
sortedDistIndices = distances.argsort()
classCount={}
for i in range(k):
voteIlabel = labels[sortedDistIndices[i]]
classCount[voteIlabel] = classCount.get(voteIlabel,)+
sortedClassCount = sorted(classCount.iteritems(),key=operator.itemgetter(),reverse=True)
return sortedClassCount[][]
4. 测试
def datingClassTest():
resultList = ['一点也不喜欢','有一点好感','特别喜欢']
hoRatio = 0.1
filename = 'E:\\datingTestSet2.txt';
(marix,classLabel)=read_file(filename)
normdataSet,ranges,minVals=autoNorm(marix)
m = normdataSet.shape[]
numTestVecs = int(m*hoRatio)
errorCount = 0.0
for i in range(numTestVecs):
classResult = classify(normdataSet[i,:],normdataSet[numTestVecs:m,:],classLabel[numTestVecs:m],)
print "你对这个人的感觉是:%s ,现实情况是:%s" %(resultList[int(classResult-)],resultList[int(classLabel[i]-)])
if classResult != classLabel[i]:
errorCount += 1.0
print "错误率是: %f " %(errorCount/float(numTestVecs))
5. 测试结果
你对这个人的感觉是:一点也不喜欢 ,现实情况是:一点也不喜欢
你对这个人的感觉是:一点也不喜欢 ,现实情况是:一点也不喜欢
你对这个人的感觉是:一点也不喜欢 ,现实情况是:一点也不喜欢
你对这个人的感觉是:特别喜欢 ,现实情况是:特别喜欢
你对这个人的感觉是:特别喜欢 ,现实情况是:特别喜欢
你对这个人的感觉是:一点也不喜欢 ,现实情况是:一点也不喜欢
你对这个人的感觉是:特别喜欢 ,现实情况是:特别喜欢
你对这个人的感觉是:一点也不喜欢 ,现实情况是:一点也不喜欢
你对这个人的感觉是:一点也不喜欢 ,现实情况是:一点也不喜欢
...
所有程序均来自《机器学习实战》,非常好的书籍,推荐大家学习一下......