基于opencv的小波变换

时间:2022-09-02 11:33:53

基于opencv的小波变换

提供函数DWT()和IDWT(),前者完成任意层次的小波变换,后者完成任意层次的小波逆变换。输入图像要求必须是单通道浮点图像,对图像大小也有要求(1层变换:w,h必须是2的倍数;2层变换:w,h必须是4的倍数;3层变换:w,h必须是8的倍数......),变换后的结果直接保存在输入图像中。
1、函数参数简单,图像指针pImage和变换层数nLayer。
2、一个函数直接完成多层次二维小波变换,尽量减少下标运算,避免不必要的函数调用,以提高执行效率。
3、变换过程中,使用了一个指针数组pData用于保存每行数据的起始位置,pRow和pColumn用于保存一行和一列临时数据,用于奇偶分离或合并,内存消耗较少。

代码:全选
// 二维离散小波变换(单通道浮点图像)
void DWT(IplImage *pImage, int nLayer)
{
   // 执行条件
   if (pImage)
   {
      if (pImage->nChannels == 1 &&
         pImage->depth == IPL_DEPTH_32F &&
         ((pImage->width >> nLayer) << nLayer) == pImage->width &&
         ((pImage->height >> nLayer) << nLayer) == pImage->height)
      {
         int     i, x, y, n;
         float   fValue   = 0;
         float   fRadius  = sqrt(2.0f);
         int     nWidth   = pImage->width;
         int     nHeight  = pImage->height;
         int     nHalfW   = nWidth / 2;
         int     nHalfH   = nHeight / 2;
         float **pData    = new float*[pImage->height];
         float  *pRow     = new float[pImage->width];
         float  *pColumn  = new float[pImage->height];
         for (i = 0; i < pImage->height; i++)
         {
            pData[i] = (float*) (pImage->imageData + pImage->widthStep * i);
         }
         // 多层小波变换
         for (n = 0; n < nLayer; n++, nWidth /= 2, nHeight /= 2, nHalfW /= 2, nHalfH /= 2)
         {
            // 水平变换
            for (y = 0; y < nHeight; y++)
            {
               // 奇偶分离
               memcpy(pRow, pData[y], sizeof(float) * nWidth);
               for (i = 0; i < nHalfW; i++)
               {
                  x = i * 2;
                  pData[y][i] = pRow[x];
                  pData[y][nHalfW + i] = pRow[x + 1];
               }
               // 提升小波变换
               for (i = 0; i < nHalfW - 1; i++)
               {
                  fValue = (pData[y][i] + pData[y][i + 1]) / 2;
                  pData[y][nHalfW + i] -= fValue;
               }
               fValue = (pData[y][nHalfW - 1] + pData[y][nHalfW - 2]) / 2;
               pData[y][nWidth - 1] -= fValue;
               fValue = (pData[y][nHalfW] + pData[y][nHalfW + 1]) / 4;
               pData[y][0] += fValue;
               for (i = 1; i < nHalfW; i++)
               {
                  fValue = (pData[y][nHalfW + i] + pData[y][nHalfW + i - 1]) / 4;
                  pData[y][i] += fValue;
               }
               // 频带系数
               for (i = 0; i < nHalfW; i++)
               {
                  pData[y][i] *= fRadius;
                  pData[y][nHalfW + i] /= fRadius;
               }
            }
            // 垂直变换
            for (x = 0; x < nWidth; x++)
            {
               // 奇偶分离
               for (i = 0; i < nHalfH; i++)
               {
                  y = i * 2;
                  pColumn[i] = pData[y][x];
                  pColumn[nHalfH + i] = pData[y + 1][x];
               }
               for (i = 0; i < nHeight; i++)
               {
                  pData[i][x] = pColumn[i];
               }
               // 提升小波变换
               for (i = 0; i < nHalfH - 1; i++)
               {
                  fValue = (pData[i][x] + pData[i + 1][x]) / 2;
                  pData[nHalfH + i][x] -= fValue;
               }
               fValue = (pData[nHalfH - 1][x] + pData[nHalfH - 2][x]) / 2;
               pData[nHeight - 1][x] -= fValue;
               fValue = (pData[nHalfH][x] + pData[nHalfH + 1][x]) / 4;
               pData[0][x] += fValue;
               for (i = 1; i < nHalfH; i++)
               {
                  fValue = (pData[nHalfH + i][x] + pData[nHalfH + i - 1][x]) / 4;
                  pData[i][x] += fValue;
               }
               // 频带系数
               for (i = 0; i < nHalfH; i++)
               {
                  pData[i][x] *= fRadius;
                  pData[nHalfH + i][x] /= fRadius;
               }
            }
         }
         delete[] pData;
         delete[] pRow;
         delete[] pColumn;
      }
   }
}

// 二维离散小波恢复(单通道浮点图像)
void IDWT(IplImage *pImage, int nLayer)
{
   // 执行条件
   if (pImage)
   {
      if (pImage->nChannels == 1 &&
         pImage->depth == IPL_DEPTH_32F &&
         ((pImage->width >> nLayer) << nLayer) == pImage->width &&
         ((pImage->height >> nLayer) << nLayer) == pImage->height)
      {
         int     i, x, y, n;
         float   fValue   = 0;
         float   fRadius  = sqrt(2.0f);
         int     nWidth   = pImage->width >> (nLayer - 1);
         int     nHeight  = pImage->height >> (nLayer - 1);
         int     nHalfW   = nWidth / 2;
         int     nHalfH   = nHeight / 2;
         float **pData    = new float*[pImage->height];
         float  *pRow     = new float[pImage->width];
         float  *pColumn  = new float[pImage->height];
         for (i = 0; i < pImage->height; i++)
         {
            pData[i] = (float*) (pImage->imageData + pImage->widthStep * i);
         }
         // 多层小波恢复
         for (n = 0; n < nLayer; n++, nWidth *= 2, nHeight *= 2, nHalfW *= 2, nHalfH *= 2)
         {
            // 垂直恢复
            for (x = 0; x < nWidth; x++)
            {
               // 频带系数
               for (i = 0; i < nHalfH; i++)
               {
                  pData[i][x] /= fRadius;
                  pData[nHalfH + i][x] *= fRadius;
               }
               // 提升小波恢复
               fValue = (pData[nHalfH][x] + pData[nHalfH + 1][x]) / 4;
               pData[0][x] -= fValue;
               for (i = 1; i < nHalfH; i++)
               {
                  fValue = (pData[nHalfH + i][x] + pData[nHalfH + i - 1][x]) / 4;
                  pData[i][x] -= fValue;
               }
               for (i = 0; i < nHalfH - 1; i++)
               {
                  fValue = (pData[i][x] + pData[i + 1][x]) / 2;
                  pData[nHalfH + i][x] += fValue;
               }
               fValue = (pData[nHalfH - 1][x] + pData[nHalfH - 2][x]) / 2;
               pData[nHeight - 1][x] += fValue;
               // 奇偶合并
               for (i = 0; i < nHalfH; i++)
               {
                  y = i * 2;
                  pColumn[y] = pData[i][x];
                  pColumn[y + 1] = pData[nHalfH + i][x];
               }
               for (i = 0; i < nHeight; i++)
               {
                  pData[i][x] = pColumn[i];
               }
            }
            // 水平恢复
            for (y = 0; y < nHeight; y++)
            {
               // 频带系数
               for (i = 0; i < nHalfW; i++)
               {
                  pData[y][i] /= fRadius;
                  pData[y][nHalfW + i] *= fRadius;
               }
               // 提升小波恢复
               fValue = (pData[y][nHalfW] + pData[y][nHalfW + 1]) / 4;
               pData[y][0] -= fValue;
               for (i = 1; i < nHalfW; i++)
               {
                  fValue = (pData[y][nHalfW + i] + pData[y][nHalfW + i - 1]) / 4;
                  pData[y][i] -= fValue;
               }
               for (i = 0; i < nHalfW - 1; i++)
               {
                  fValue = (pData[y][i] + pData[y][i + 1]) / 2;
                  pData[y][nHalfW + i] += fValue;
               }
               fValue = (pData[y][nHalfW - 1] + pData[y][nHalfW - 2]) / 2;
               pData[y][nWidth - 1] += fValue;
               // 奇偶合并
               for (i = 0; i < nHalfW; i++)
               {
                  x = i * 2;
                  pRow[x] = pData[y][i];
                  pRow[x + 1] = pData[y][nHalfW + i];
               }
               memcpy(pData[y], pRow, sizeof(float) * nWidth);
            }
         }
         delete[] pData;
         delete[] pRow;
         delete[] pColumn;
      }
   }
}

上述代码只能对单通道进行变换,并且对图像位深和大小也有要求,还是不太好用。没关系,就这两个函数,可以对任意大小的彩色图像进行任意层次的小波变换,给段代码:

代码:全选
// 小波变换层数
int nLayer = 2;
// 输入彩色图像
IplImage *pSrc = cvLoadImage("Lena.jpg", CV_LOAD_IMAGE_COLOR);
// 计算小波图象大小
CvSize size = cvGetSize(pSrc);
if ((pSrc->width >> nLayer) << nLayer != pSrc->width)
{
   size.width = ((pSrc->width >> nLayer) + 1) << nLayer;
}
if ((pSrc->height >> nLayer) << nLayer != pSrc->height)
{
   size.height = ((pSrc->height >> nLayer) + 1) << nLayer;
}
// 创建小波图象
IplImage *pWavelet = cvCreateImage(size, IPL_DEPTH_32F, pSrc->nChannels);
if (pWavelet)
{
   // 小波图象赋值
   cvSetImageROI(pWavelet, cvRect(0, 0, pSrc->width, pSrc->height));
   cvConvertScale(pSrc, pWavelet, 1, -128);
   cvResetImageROI(pWavelet);
   // 彩色图像小波变换
   IplImage *pImage = cvCreateImage(cvGetSize(pWavelet), IPL_DEPTH_32F, 1);
   if (pImage)
   {
      for (int i = 1; i <= pWavelet->nChannels; i++)
      {
         cvSetImageCOI(pWavelet, i);
         cvCopy(pWavelet, pImage, NULL);
         // 二维离散小波变换
         DWT(pImage, nLayer);
         // 二维离散小波恢复
         // IDWT(pImage, nLayer);
         cvCopy(pImage, pWavelet, NULL);
      }
      cvSetImageCOI(pWavelet, 0);
      cvReleaseImage(&pImage);
   }
   // 小波变换图象
   cvSetImageROI(pWavelet, cvRect(0, 0, pSrc->width, pSrc->height));
   cvConvertScale(pWavelet, pSrc, 1, 128);
   cvResetImageROI(pWavelet); // 本行代码有点多余,但有利用养成良好的编程习惯
   cvReleaseImage(&pWavelet);
}
// 显示图像pSrc
// ...
cvReleaseImage(&pSrc);

基于opencv的小波变换的更多相关文章

  1. 基于opencv的小波变换代码和图像结果

    #include "stdafx.h" #include "WaveTransform.h" #include <math.h> #include ...

  2. &lbrack;转载&rsqb;卡尔曼滤波器及其基于opencv的实现

    卡尔曼滤波器及其基于opencv的实现 源地址:http://hi.baidu.com/superkiki1989/item/029f65013a128cd91ff0461b 这个是*中的链接, ...

  3. 基于Opencv和Mfc的图像处理增强库GOCVHelper&lpar;索引&rpar;

    GOCVHelper(GreenOpen Computer Version Helper )是我在这几年编写图像处理程序的过程中积累下来的函数库.主要是对Opencv的适当扩展和在实现Mfc程序时候的 ...

  4. 基于OpenCv的人脸检测、识别系统学习制作笔记之一

    基于OpenCv从视频文件到摄像头的人脸检测 在OpenCv中读取视频文件和读取摄像头的的视频流然后在放在一个窗口中显示结果其实是类似的一个实现过程. 先创建一个指向CvCapture结构的指针 Cv ...

  5. 基于opencv网络摄像头在ubuntu下的视频获取

     基于opencv网络摄像头在ubuntu下的视频获取 1  工具 原料 平台 :UBUNTU12.04 安装库  Opencv-2.3 2  安装编译运行步骤 安装编译opencv-2.3  参 ...

  6. 基于opencv在摄像头ubuntu根据视频获取

     基于opencv在摄像头ubuntu根据视频获取 1  工具 原料 平台 :UBUNTU12.04 安装库  Opencv-2.3 2  安装编译执行步骤 安装编译opencv-2.3  參考h ...

  7. OpenCV2学习笔记(十四):基于OpenCV卡通图片处理

    得知OpenCV有一段时间.除了研究的各种算法的内容.除了从备用,据导游书籍和资料,尝试结合链接的图像处理算法和日常生活,第一桌面上(随着摄像头)完成了一系列的视频流处理功能.开发平台Qt5.3.2+ ...

  8. Android上掌纹识别第一步:基于OpenCV的6种肤色分割 源码和效果图

    Android上掌纹识别第一步:基于OpenCV的6种肤色分割 源码和效果图 分类: OpenCV图像处理2013-02-21 21:35 6459人阅读 评论(8) 收藏 举报   原文链接  ht ...

  9. 每日一练之自适应中值滤波器&lpar;基于OpenCV实现&rpar;

    本文主要介绍了自适应的中值滤波器,并基于OpenCV实现了该滤波器,并且将自适应的中值滤波器和常规的中值滤波器对不同概率的椒盐噪声的过滤效果进行了对比.最后,对中值滤波器的优缺点了进行了总结. 空间滤 ...

随机推荐

  1. 数据库同步工具HKROnline SyncNavigator SQL Server互同步MySQL

    需要联系我QQ:786211180 HKROnline SyncNavigator 是一款专业的 SQL Server, MySQL 数据库同步软件.它为您提供一种简单智能的方式完成复杂的数据库数据同 ...

  2. 和iPhone有关的视图控制器:UIViewController、UITabBarController、UINavigationController及其混合用法

    iPhone中的view视图是应用程序对于数据最直观.最直接的呈现方式,如下是我在学习了iPhone中的视图控制器以及由其衍生的特殊子类的总结,希望对那些初学者有所帮助: UIViewControll ...

  3. eclipse的使用

    类似于数据库系统的三层目录结构,一般而言IDE在逻辑上都有三层目录结构:工作空间(或解决方案) -> 工程 -> 文件. 当然,如果构建java project,那么目录结构是可以更深,因 ...

  4. protractor protractor&period;conf&period;js &lbrack;launcher&rsqb; Process exited with error code 1 undefined&colon;1190

    y@y:karma-t01$ protractor protractor.conf.js [launcher] Process exited with error code undefined: vl ...

  5. IPTV中的EPG前端优化

    先看一下IPTV相关情况: l 目前TPTV市场情况 a) 截止今年2月,全国IPTV总用户数达3630.2万,我国移动互联网用户规模接近9亿,人均月接入量近300M,8M宽带达半数,光纤近4成. 图 ...

  6. java学习一目了然&mdash&semi;&mdash&semi;File类文件处理

    java学习一目了然--File类文件处理 File类(java.io.File) 构造函数: File(String path) File(String parent,String child) F ...

  7. C&plus;&plus;11 左值与右值

    概念 左值:表达式结束后依然存在的对象 右值:表达式结束后就不存在的临时对象 2.如何判断左值和右值 能不能对表达式取地址,如果能,就是左值,否则就是右值 3.对下面的语句进行区分 int a = 3 ...

  8. 【集训第三天&&num;183&semi;疯狂训练】哦,顺带学习了manacher

    虽然说是疯狂训练吧,但是也没写多少题,就把伸展树的操作熟悉了一下,ac了5个题目. 一整天没啥可吐槽的,除了昨天在机房打游戏的某位朋友翻车后和教练谈了谈心2333 说题吧.. 1.BZOJ1208 H ...

  9. Android远程桌面助手扩展之微信跳一跳辅助

    微信跳一跳的外挂辅助已是五花八门,万能的TB上也有了各种明码标价的代练.微信小程序游戏的火爆甚至带火了手游外挂产业.另一方面,跳一跳游戏也在不断更新,防止使用外挂刷高分.Android远程桌面助手支持 ...

  10. poj 1182 &lpar;关系并查集&rpar; 食物链

    题目传送门:http://poj.org/problem?id=1182 这是一道关系型并查集的题,对于每个动物来说,只有三种情况:同类,吃与被吃: 所以可以用0,1,2三个数字代表三种情况,在使用并 ...