我能从C调用std::函数吗?

时间:2022-09-01 16:49:51

I have some C++ code that returns a std::function. I would like to call this from some C code. Is this possible? As an example I have the following code:

我有一些c++代码返回std::函数。我想从C代码调用它。这是可能的吗?例如,我有以下代码:

typedef std::function<int(int)> AdderFunction;

AdderFunction makeAdder(int amount) {
    return [amount] (int n) {
        return n + amount;
    };
}

extern "C" {
    AdderFunction makeCAdder(int amount) {
        return makeAdder(amount);
    }
}

with clang++ -std=c++11 test.cpp it results in the following warning:

铿锵声+ +化= c + + 11测试。cpp结果如下:

'makeCAdder' has C-linkage specified, but returns user-defined type 'AdderFunction' (aka 'function<int (int)>') which is incompatible with C

I understand why this is happening, but wondering if there is a pattern to make it possible?

我理解为什么会发生这种情况,但我想知道是否有一种模式可以使它成为可能?

5 个解决方案

#1


16  

The most portable method to interface between C/C++ will be to use pointers to pass data between languages and use non-member functions to make function calls.

C/ c++之间接口最方便的方法是使用指针在语言之间传递数据,并使用非成员函数进行函数调用。

The .h file:

. h文件:

#ifdef __cplusplus
extern "C" {
#endif

   // Declare the struct.
   struct Adder;

   // Declare functions to work with the struct.
   Adder* makeAdder(int amount);

   int invokeAdder(Adder* adder, int n);

   void deleteAdder(Adder* adder);

#ifdef __cplusplus
}
#endif

Implement them in a .cpp file as:

在.cpp文件中实现它们,如:

#include <functional>

typedef std::function<int(int)> AdderFunction;
struct Adder
{
   AdderFunction f;
};

AdderFunction makeAdderFunction(int amount) {
    return [amount] (int n) {
        return n + amount;
    };
}

Adder* makeAdder(int amount)
{
   Adder* adder = new Adder;
   adder->f = makeAdderFunction(amount);
   return adder;
}

int invokeAdder(Adder* adder, int n)
{
   return adder->f(n);
}

void deleteAdder(Adder* adder)
{
   delete adder;
}

#2


8  

It's not possible to call a std::function from C, because C doesn't support the language features that are required. C doesn't have templates, access modifiers, callable objects, virtual methods, or anything else that std::function could use under the hood. You need to come up with a strategy that C can understand.

不可能从C调用std::函数,因为C不支持所需的语言特性。C没有模板、访问修饰符、可调用对象、虚拟方法或任何std:::函数可以在引擎盖下使用的东西。你需要想出一个C可以理解的策略。

One such strategy is to copy/move your std::function to the heap and return it as an opaque pointer. Then, you would provide another function through your C++ interface that takes that opaque pointer and calls the function that it contains.

其中一个策略是复制/移动std::对堆的函数,并将其作为一个不透明的指针返回。然后,通过c++接口提供另一个函数,该函数接受不透明的指针并调用它包含的函数。

// C side
struct function_opaque;
int call_opaque(struct function_opaque*, int param);

// C++ side
extern "C" {
    struct function_opaque {
        std::function<int(int)> f;
    };

    int call_opaque(function_opaque* func, int param) {
        return func->f(param);
    }
};

Of course, this comes with memory management implications.

当然,这与内存管理有关。

#3


4  

You need to put the typedef inside the extern "C" block at the minimum (to get it to compile as C++). I'm not sure that will work from C, however. What will work from C is just to use plain function pointers, e.g.

您需要将typedef至少放在extern“C”块内部(使其编译为c++)。不过,我不确定C是否适用。C的作用就是使用普通的函数指针,例如。

extern "C" {
using AdderFunction = int(int);
// old-style: typedef int(*AdderFunction)(int);
}

Edit: If you're using an API that gives you std::function objects, you can use the std::function::target() method to obtain the (C-callable) raw function pointer it refers to.

编辑:如果您使用的API为您提供std:::函数对象,您可以使用std:::::target()方法来获取它引用的(C-callable)原始函数指针。

using AdderFunction = std::function<int(int)>;
extern "C" {
using CAdderFunction = int(int);
CAdderFunction makeCAdder(int amount)
{
        return makeAdder(amount).target<CAdderFunction>();
}
}

#4


1  

Another solution is to split the std::function into a pointer to the closure and a pointer to the member function, and pass three things to the C function that wants to invoke the lambda:

另一个解决方案是将std::函数拆分为指向闭包的指针和指向成员函数的指针,并将三件事传递给要调用lambda函数的C函数:

  • The address of a C++ function that knows how to invoke the function on the closure type-safely
  • 一个c++函数的地址,它知道如何安全地调用关闭类型的函数。
  • The closure pointer (unsafely cast to void *)
  • 闭包指针(不安全的cast到void *)
  • The member function pointer (hidden inside a wrapper struct and cast to void * as well)
  • 成员函数指针(隐藏在包装器结构中,并被强制转换为void *)

Here’s a sample implementation.

下面是一个示例实现。

#include <functional>
#include <iostream>

template<typename Closure, typename Result, typename... Args>
struct MemberFunctionPointer
{
    Result (Closure::*value)(Args...) const;
};

template<typename Closure, typename Result, typename... Args>
MemberFunctionPointer<Closure, Result, Args...>
member_function_pointer(
    Result (Closure::*const value)(Args...) const)
{
    return MemberFunctionPointer<Closure, Result, Args...>{value};
}

template<typename Closure, typename Result, typename... Args>
Result
call(
    const void *const function,
    const void *const closure,
    Args... args)
{
    return
        ((reinterpret_cast<const Closure *>(closure))
        ->*(reinterpret_cast<const MemberFunctionPointer<Closure, Result, Args...>*>(function)->value))
        (std::forward<Args>(args)...);
}

Sample usage from the C side:

C方样品使用情况:

int
c_call(
    int (*const caller)(const void *, const void *, int),
    const void *const function,
    const void *const closure,
    int argument)
{
    return caller (function, closure, argument);
}

Sample usage from the C++ side:

c++方面的示例用法:

int
main()
{
    int captured = 5;
    auto unwrapped = [captured] (const int argument) {
        return captured + argument;
    };
    std::function<int(int)> wrapped = unwrapped;

    auto function = member_function_pointer(&decltype(unwrapped)::operator());
    auto closure = wrapped.target<decltype(unwrapped)>();
    auto caller = &call<decltype(unwrapped), int, int>;
    std::cout
        << c_call(
            caller,
            reinterpret_cast<const void *>(&function),
            reinterpret_cast<const void *>(closure),
            10)
        << '\n';
}

The reason for the wrapper struct is that you can’t cast a member function pointer to void * or any other object pointer type, not even with reinterpret_cast, so instead we pass the address of the member function pointer. You can choose to place the MemberFunctionPointer structure on the heap, e.g. with unique_ptr, if it needs to live longer than it does in this simple example.

包装器结构的原因是,您不能将成员函数指针转换为void *或任何其他对象指针类型,即使使用reexplain cast,也不能,因此我们传递成员函数指针的地址。您可以选择将MemberFunctionPointer结构放在堆上,例如使用unique_ptr,如果它需要比这个简单示例中的活得更长。

You can also wrap these three arguments in a single structure on the C side, rather than pass them individually:

您也可以将这三个参数封装在C端的一个结构中,而不是单独传递它们:

struct IntIntFunction
{
    int (*caller)(const void *, const void *, int);
    const void *function;
    const void *closure;
};

#define INVOKE(f, ...) ((f).caller((f).function, (f).closure, __VA_ARGS__))

int
c_call(IntIntFunction function)
{
    return INVOKE(function, 10);
}

#5


0  

The problem with this solution is when you call makeAdder with parameter values.. Couldn't solve it but I'm posting just in case someone else can..

这个解决方案的问题是当您使用参数值调用makeAdder时。我不能解决这个问题,但我只是发帖子以防别人能解决。

template <typename FunctionPointerType, typename Lambda, typename ReturnType, typename ...Args>
inline FunctionPointerType MakeFunc(Lambda&& lambda, ReturnType (*)(Args...))
{
    thread_local std::function<ReturnType(Args...)> func(lambda);

    struct Dummy
    {
        static ReturnType CallLambda(Args... args)
        {
            return func(std::forward<Args>(args)...);
        }
    };

    return &Dummy::CallLambda;
}

template <typename FunctionPointerType, typename Lambda>
FunctionPointerType MakeFunc(Lambda&& lambda)
{
    return MakeFunc<FunctionPointerType, Lambda>(std::forward<Lambda>(lambda), FunctionPointerType());
}


typedef int(*AdderFunction)(int);

AdderFunction makeAdder(int amount) {
    return MakeFunc<int(*)(int)>([amount] (int n) {
        return n + amount;
    });
}

extern "C" {
    typedef int(*CAdderFunction)(int);

    CAdderFunction makeCAdder(int amount)
    {
        return makeAdder(amount);
    }
}

It works by storing the lambda a thread local std::function. Then return a pointer to a static function which will call the lambda with the parameters passed in.

它的工作方式是存储lambda线程本地std::函数。然后返回一个指向静态函数的指针,该函数将调用带有传入参数的lambda函数。

I thought about using an unordered_map and keeping track of each makeAdder call but then you can't reference it from static context..

我想过使用unordered_map并跟踪每个makeAdder调用,但是不能从静态上下文引用它。

#1


16  

The most portable method to interface between C/C++ will be to use pointers to pass data between languages and use non-member functions to make function calls.

C/ c++之间接口最方便的方法是使用指针在语言之间传递数据,并使用非成员函数进行函数调用。

The .h file:

. h文件:

#ifdef __cplusplus
extern "C" {
#endif

   // Declare the struct.
   struct Adder;

   // Declare functions to work with the struct.
   Adder* makeAdder(int amount);

   int invokeAdder(Adder* adder, int n);

   void deleteAdder(Adder* adder);

#ifdef __cplusplus
}
#endif

Implement them in a .cpp file as:

在.cpp文件中实现它们,如:

#include <functional>

typedef std::function<int(int)> AdderFunction;
struct Adder
{
   AdderFunction f;
};

AdderFunction makeAdderFunction(int amount) {
    return [amount] (int n) {
        return n + amount;
    };
}

Adder* makeAdder(int amount)
{
   Adder* adder = new Adder;
   adder->f = makeAdderFunction(amount);
   return adder;
}

int invokeAdder(Adder* adder, int n)
{
   return adder->f(n);
}

void deleteAdder(Adder* adder)
{
   delete adder;
}

#2


8  

It's not possible to call a std::function from C, because C doesn't support the language features that are required. C doesn't have templates, access modifiers, callable objects, virtual methods, or anything else that std::function could use under the hood. You need to come up with a strategy that C can understand.

不可能从C调用std::函数,因为C不支持所需的语言特性。C没有模板、访问修饰符、可调用对象、虚拟方法或任何std:::函数可以在引擎盖下使用的东西。你需要想出一个C可以理解的策略。

One such strategy is to copy/move your std::function to the heap and return it as an opaque pointer. Then, you would provide another function through your C++ interface that takes that opaque pointer and calls the function that it contains.

其中一个策略是复制/移动std::对堆的函数,并将其作为一个不透明的指针返回。然后,通过c++接口提供另一个函数,该函数接受不透明的指针并调用它包含的函数。

// C side
struct function_opaque;
int call_opaque(struct function_opaque*, int param);

// C++ side
extern "C" {
    struct function_opaque {
        std::function<int(int)> f;
    };

    int call_opaque(function_opaque* func, int param) {
        return func->f(param);
    }
};

Of course, this comes with memory management implications.

当然,这与内存管理有关。

#3


4  

You need to put the typedef inside the extern "C" block at the minimum (to get it to compile as C++). I'm not sure that will work from C, however. What will work from C is just to use plain function pointers, e.g.

您需要将typedef至少放在extern“C”块内部(使其编译为c++)。不过,我不确定C是否适用。C的作用就是使用普通的函数指针,例如。

extern "C" {
using AdderFunction = int(int);
// old-style: typedef int(*AdderFunction)(int);
}

Edit: If you're using an API that gives you std::function objects, you can use the std::function::target() method to obtain the (C-callable) raw function pointer it refers to.

编辑:如果您使用的API为您提供std:::函数对象,您可以使用std:::::target()方法来获取它引用的(C-callable)原始函数指针。

using AdderFunction = std::function<int(int)>;
extern "C" {
using CAdderFunction = int(int);
CAdderFunction makeCAdder(int amount)
{
        return makeAdder(amount).target<CAdderFunction>();
}
}

#4


1  

Another solution is to split the std::function into a pointer to the closure and a pointer to the member function, and pass three things to the C function that wants to invoke the lambda:

另一个解决方案是将std::函数拆分为指向闭包的指针和指向成员函数的指针,并将三件事传递给要调用lambda函数的C函数:

  • The address of a C++ function that knows how to invoke the function on the closure type-safely
  • 一个c++函数的地址,它知道如何安全地调用关闭类型的函数。
  • The closure pointer (unsafely cast to void *)
  • 闭包指针(不安全的cast到void *)
  • The member function pointer (hidden inside a wrapper struct and cast to void * as well)
  • 成员函数指针(隐藏在包装器结构中,并被强制转换为void *)

Here’s a sample implementation.

下面是一个示例实现。

#include <functional>
#include <iostream>

template<typename Closure, typename Result, typename... Args>
struct MemberFunctionPointer
{
    Result (Closure::*value)(Args...) const;
};

template<typename Closure, typename Result, typename... Args>
MemberFunctionPointer<Closure, Result, Args...>
member_function_pointer(
    Result (Closure::*const value)(Args...) const)
{
    return MemberFunctionPointer<Closure, Result, Args...>{value};
}

template<typename Closure, typename Result, typename... Args>
Result
call(
    const void *const function,
    const void *const closure,
    Args... args)
{
    return
        ((reinterpret_cast<const Closure *>(closure))
        ->*(reinterpret_cast<const MemberFunctionPointer<Closure, Result, Args...>*>(function)->value))
        (std::forward<Args>(args)...);
}

Sample usage from the C side:

C方样品使用情况:

int
c_call(
    int (*const caller)(const void *, const void *, int),
    const void *const function,
    const void *const closure,
    int argument)
{
    return caller (function, closure, argument);
}

Sample usage from the C++ side:

c++方面的示例用法:

int
main()
{
    int captured = 5;
    auto unwrapped = [captured] (const int argument) {
        return captured + argument;
    };
    std::function<int(int)> wrapped = unwrapped;

    auto function = member_function_pointer(&decltype(unwrapped)::operator());
    auto closure = wrapped.target<decltype(unwrapped)>();
    auto caller = &call<decltype(unwrapped), int, int>;
    std::cout
        << c_call(
            caller,
            reinterpret_cast<const void *>(&function),
            reinterpret_cast<const void *>(closure),
            10)
        << '\n';
}

The reason for the wrapper struct is that you can’t cast a member function pointer to void * or any other object pointer type, not even with reinterpret_cast, so instead we pass the address of the member function pointer. You can choose to place the MemberFunctionPointer structure on the heap, e.g. with unique_ptr, if it needs to live longer than it does in this simple example.

包装器结构的原因是,您不能将成员函数指针转换为void *或任何其他对象指针类型,即使使用reexplain cast,也不能,因此我们传递成员函数指针的地址。您可以选择将MemberFunctionPointer结构放在堆上,例如使用unique_ptr,如果它需要比这个简单示例中的活得更长。

You can also wrap these three arguments in a single structure on the C side, rather than pass them individually:

您也可以将这三个参数封装在C端的一个结构中,而不是单独传递它们:

struct IntIntFunction
{
    int (*caller)(const void *, const void *, int);
    const void *function;
    const void *closure;
};

#define INVOKE(f, ...) ((f).caller((f).function, (f).closure, __VA_ARGS__))

int
c_call(IntIntFunction function)
{
    return INVOKE(function, 10);
}

#5


0  

The problem with this solution is when you call makeAdder with parameter values.. Couldn't solve it but I'm posting just in case someone else can..

这个解决方案的问题是当您使用参数值调用makeAdder时。我不能解决这个问题,但我只是发帖子以防别人能解决。

template <typename FunctionPointerType, typename Lambda, typename ReturnType, typename ...Args>
inline FunctionPointerType MakeFunc(Lambda&& lambda, ReturnType (*)(Args...))
{
    thread_local std::function<ReturnType(Args...)> func(lambda);

    struct Dummy
    {
        static ReturnType CallLambda(Args... args)
        {
            return func(std::forward<Args>(args)...);
        }
    };

    return &Dummy::CallLambda;
}

template <typename FunctionPointerType, typename Lambda>
FunctionPointerType MakeFunc(Lambda&& lambda)
{
    return MakeFunc<FunctionPointerType, Lambda>(std::forward<Lambda>(lambda), FunctionPointerType());
}


typedef int(*AdderFunction)(int);

AdderFunction makeAdder(int amount) {
    return MakeFunc<int(*)(int)>([amount] (int n) {
        return n + amount;
    });
}

extern "C" {
    typedef int(*CAdderFunction)(int);

    CAdderFunction makeCAdder(int amount)
    {
        return makeAdder(amount);
    }
}

It works by storing the lambda a thread local std::function. Then return a pointer to a static function which will call the lambda with the parameters passed in.

它的工作方式是存储lambda线程本地std::函数。然后返回一个指向静态函数的指针,该函数将调用带有传入参数的lambda函数。

I thought about using an unordered_map and keeping track of each makeAdder call but then you can't reference it from static context..

我想过使用unordered_map并跟踪每个makeAdder调用,但是不能从静态上下文引用它。