Day 1, Div 2, Prob. B - 吃豆豆
题目大意
wls有一个\(n\)行\(m\)列的棋盘,对于第\(i\)行第\(j\)列的格子,每过\(T[i][j]\)秒会在上面出现一个糖果,糖果只存在一秒,下一秒就会消失。
假如wls第\(k\)秒在第\(i\)行第\(j\)列的格子上,满足\(T[i][j]|k\),则wls会得到一个糖果。
wls每一秒只可以上下左右移动一格或停在原地。
请问wls从指定的\(S(xs,ys)\)出发到达指定的\(T(xt,yt)\),并且在路上得到至少\(C\)个糖果最少需要多少时间?
wls在\(S\)的初始时间是第0秒。
\]
解题思路
\(dp[i][j][k]\)表示吃到至少\(k\)颗豆豆,并且停在\((i,j)\)处的最少时间(“最少”其实有些不准确,这个后面再解释)。那么\(dp[i][j][1]\)就可以这样求出来了:
\]
\(\Delta t\)主要用于对\(T[i][j]\)取整,注意\(dp[xs][ys][1]\)就等于\(T[xs][ys]\)。接下来可以递推求\(dp[i][j][k]\)了:
\]
同样\((i',j')\)和\((i,j)\)相同时也要特殊考虑。
所以重新说明一下\(dp[i][j][k]\)的意义。它表示吃到至少\(k\)颗豆豆,并且停在\((i,j)\)的某个时间。这个时间满足:给定\(k\),由所有的\(dp[i'][j'][k]\)走到\((i,j)\),取最小值就是至少吃\(k\)颗豆豆,并且停在\((i,j)\)处的最少时间。因为由\(dp[i'][j'][k-1]\)转移到\(dp[i][j][k]\)时,路途上可能吃了豆豆,但这一定也会被某个\(dp[i''][j''][k]\)存储起来。
还是有点难理解,\(dp\)的题还是要多做一些才能有这样的思路。
#include <bits/stdc++.h>
typedef long long ll;
const int inf=0x3f3f3f3f;
const double eps=1e-5;
const int mod=1000000007;
const int maxn=10;
const int maxm=1018;
using namespace std;
int t[maxn+5][maxn+5];
int dp[maxn+5][maxn+5][maxm+10];
int dist(int x1,int y1,int x2,int y2)
{
return abs(x1-x2)+abs(y1-y2);
}
int main()
{
int n,m,c;
scanf("%d%d%d",&n,&m,&c);
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
scanf("%d",t[i]+j);
int xs,ys,xt,yt;
scanf("%d%d%d%d",&xs,&ys,&xt,&yt);
memset(dp,0x3f,sizeof(dp));
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
{
if(i!=xs||j!=ys)
dp[i][j][1]=(dist(xs,ys,i,j)+t[i][j]-1)/t[i][j]*t[i][j];
else
dp[i][j][1]=t[i][j];
}
for(int k=2;k<=c;k++)
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
for(int ii=1;ii<=n;ii++)
for(int jj=1;jj<=m;jj++)
{
int temp;
if(ii==i&&jj==j)
temp=dp[ii][jj][k-1]+t[ii][jj];
else
temp=(dp[ii][jj][k-1]+dist(ii,jj,i,j)+t[i][j]-1)/t[i][j]*t[i][j];
dp[i][j][k]=min(dp[i][j][k],temp);
}
int ans=inf;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
int temp=dp[i][j][c]+dist(i,j,xt,yt);
ans=min(ans,temp);
}
}
printf("%d\n",ans);
return 0;
}
Day 4, Div 2, Prob. G - 置置置换
题目大意
wls有一个整数\(n\),他想请你算一下有多少\(1...n\)的排列(permutation)满足:对于所有的\(i(2\leq i\leq n)\),若\(i\)为奇数,则\(a[i-1]<a[i]\),否则\(a[i-1]>a[i]\)。请输出答案mod 1e9+7。
\]
解题思路
\(dp[i][j]\)表示使用\(1...i\),开头为\(j\)的符合条件的排列数。
容易发现,将\(dp[i][j]\)排列对\(i+1\)取补,在开头加上一个比\(i+1-j\)大的数\(j'\),再把不比\(j'\)小的数都加一,就构造了一个新的\(1...i+1\)的排列。转移方程如下:
\]
容易发现,给定\(j\),这样构造是不重不漏的:每个\(dp[i][j]\),都可以有一个\(dp[i-1][j']\)与之对应;而每个\(dp[i-1][j']\),都可以对指定的\(j\),构造出一个\(dp[i][j]\)。
再利用一个前缀和,将复杂度降到\(O(n^2)\)。
#include <bits/stdc++.h>
typedef long long ll;
const int inf=0x3f3f3f3f;
const double eps=1e-5;
const int mod=1000000007;
const int maxn=1000;
const int maxm=300000;
using namespace std;
ll dp[maxn+10][maxn+10];
int main()
{
int n;
scanf("%d",&n);
memset(dp,0,sizeof(dp));
dp[1][1]=1;
for(int i=2;i<=n;i++)
{
for(int j=1;j<=i;j++)
{
dp[i][j]=(dp[i-1][i-1]-dp[i-1][i-j])%mod;
}
for(int j=1;j<=i;j++)
dp[i][j]=(dp[i][j]+dp[i][j-1])%mod;
}
printf("%lld\n",(dp[n][n]%mod+mod)%mod);
return 0;
}
Day 5, Div 2, Prob. F - Kropki
题目大意
你有一个\(1\)到\(n\)的排列 \(p_1\), \(p_2\), ... , \(p_n\),对于所有的\(i(1\leq i\leq n-1)\), 如果\(p_i\)和\(p_{i+1}\)中,有一个数是另一个数的两倍,那么这两个数之间标一个1,否则标0。
给定及长度为\(n-1(2\leq n\leq 15)\)的01串\(str[1:n-1]\),问有多少\(1\)到\(n\)的排列对应该01串。
解题思路
状压DP。\(dp[i][j][k]\)表示\(1...i\)位,使用过的数字状态是\(j\),末位是\(k\)的排列数。
当\(i\)与\(i+1\)之间标1时,若\(k\times 2\leq n\)且未被使用,则\(dp[i][j][k]\)可以向\(dp[i+1][j'][k\times 2]\)转移:
\]
同理可得:
\]
\]
#include<bits/stdc++.h>
typedef long long ll;
const int inf=0x3f3f3f3f;
const double eps=1e-5;
const double pi=3.141592653589793;
const int mod=1000000007;
const int maxn=1000;
const int maxm=1000;
using namespace std;
char str[maxn+10];
int dp[20][40000][20];
int main()
{
int n;
scanf("%d",&n);
scanf("%s",str+1);
memset(dp,0,sizeof(dp));
for(int i=1; i<=15; i++)
dp[1][1<<(i-1)][i]=1;
for(int i=1; i<=n-1; i++)
for(int j=1;j<=(1<<n)-1;j++)
for(int k=1;k<=n;k++)
if(dp[i][j][k]>0)
{
if(str[i]=='1')
{
if(k%2==0&&(j&(1<<((k/2)-1)))==0)
dp[i+1][j|(1<<((k/2)-1))][k/2]=(dp[i+1][j|(1<<((k/2)-1))][k/2]+dp[i][j][k])%mod;
if(k*2<=n&&(j&(1<<((k*2)-1)))==0)
dp[i+1][j|(1<<((k*2)-1))][k*2]=(dp[i+1][j|(1<<((k*2)-1))][k*2]+dp[i][j][k])%mod;
}
else
{
for(int tmp=1;tmp<=n;tmp++)
if((k%2==1||tmp!=k/2)&&tmp!=k*2&&(j&(1<<((tmp)-1)))==0)
dp[i+1][j|(1<<((tmp)-1))][tmp]=(dp[i+1][j|(1<<((tmp)-1))][tmp]+dp[i][j][k])%mod;
}
}
ll ans=0;
for(int i=1;i<=n;i++)
ans=(ans+1LL*dp[n][(1<<n)-1][i])%mod;
printf("%lld\n",ans);
return 0;
}
CCPC Wannafly Winter Camp Div2 部分题解的更多相关文章
-
2020 CCPC Wannafly Winter Camp Day1 C. 染色图
2020 CCPC Wannafly Winter Camp Day1 C. 染色图 定义一张无向图 G=⟨V,E⟩ 是 k 可染色的当且仅当存在函数 f:V↦{1,2,⋯,k} 满足对于 G 中的任 ...
-
2020 CCPC Wannafly Winter Camp Day1-F-乘法
题目传送门 sol:二分答案$K$,算大于$K$的乘积有多少个.关键在于怎么算这个个数,官方题解上给出的复杂度是$O(nlogn)$,那么计算个数的复杂度是$O(n)$的.感觉写着有点困难,自己写了一 ...
-
2020 CCPC Wannafly Winter Camp Day1 Div.1&;amp F
#include<bits/stdc++.h> #define forn(i, n) for (int i = 0; i < int(n); i++) #define fore(i, ...
-
2020 CCPC Wannafly Winter Camp Day1 - I. K小数查询(分块)
题目链接:K小数查询 题意:给你一个长度为$n$序列$A$,有$m$个操作,操作分为两种: 输入$x,y,c$,表示对$i\in[x,y] $,令$A_{i}=min(A_{i},c)$ 输入$x,y ...
-
2020 CCPC Wannafly Winter Camp Day2-K-破忒头的匿名信
题目传送门 sol:先通过AC自动机构建字典,用$dp[i]$表示长串前$i$位的最小代价,若有一个单词$s$是长串的前$i$项的后缀,那么可以用$dp[i - len(s)] + val(s)$转移 ...
-
2019 wannafly winter camp day 3
2019 wannafly winter camp day 3 J 操作S等价于将S串取反,然后依次遍历取反后的串,每次加入新字符a,当前的串是T,那么这次操作之后的串就是TaT.这是第一次转化. 涉 ...
-
2019 wannafly winter camp
2019 wannafly winter camp Name Rank Solved A B C D E F G H I J K day1 9 5/11 O O O O O day2 5 3/11 O ...
-
2019 wannafly winter camp day5-8代码库
目录 day5 5H div2 Nested Tree (树形dp) 5F div2 Kropki (状压dp) 5J div1 Special Judge (计算几何) 5I div1 Sortin ...
-
Wannafly Winter Camp Day8(Div1,onsite) E题 Souls-like Game 线段树 矩阵乘法
目录 Catalog Solution: (有任何问题欢迎留言或私聊 && 欢迎交流讨论哦 Catalog @ Problem:传送门 Portal 原题目描述在最下面. 简单的 ...
随机推荐
-
你需要知道的三个CSS技巧
各种浏览器之间的竞争的白热化意味着越来越多的人现在开始使用那些支持最新.最先进的W3C Web标准的设备,以一种更具交互性的方式来访问互联网.这意味着我们终于能够利用更强大更灵活的CSS来创造更简洁, ...
-
Selenium IDE初探
系列教程: http://www.cnblogs.com/hyddd/archive/2009/05/30/1492536.html 使用过程中,出现了一些问题.
-
搜索提示時jquery的focusout和click事件沖突問題完美解决
在主流的搜索引擎上搜索時,輸入內容,往往會彈出智能提示.輸入框为input,智能提示區域为suggest.接下來一般有兩種操作: 1.選擇某一提示,則把內容复制到input中 ...
-
FZU 2195 检查站点
求出根节点到每个叶子节点的距离,找到最大的.然后总权值减去最大叶子距离就是答案. GNU C++ AC Visual C++ TLE #include<stdio.h> #include ...
-
[C#]设计模式-单例模式-创建型模式
单例模式用于在整个软件系统当中保持唯一实例,在 C# 当中最能够体现此概念的就是静态类,静态类的生命周期是跟随整个程序,并且在整个程序中仅保有一个实例. 不过在这里我们不再详细阐述单例模式与静态类有什 ...
-
版本号严格遵守semver语义化标准
地址:http://semver.org/lang/zh-CN/?spm=a219a.7629140.0.0.GUJMXE 语义化版本 2.0.0 摘要 版本格式:主版本号.次版本号.修订号,版本号递 ...
-
gispro试用版账户注册
1.注册账户 http://www.esri.com/zh-cn/arcgis/products/arcgis-pro/trial 2.分配账户权限 3.gispro可以登录了
-
UVa 225 黄金图形(回溯+剪枝)
https://vjudge.net/problem/UVA-225 题意:平面上有k个障碍点,从(0,0)出发,第一次走1个单位,第二次走2个单位,...第n次走n个单位,最后恰好回到(n,n).每 ...
-
网络爬虫(一):配置selenium、pycharm(windows平台)
最近在学习爬虫的编写,使用selenium模块时候,遇到了很多坑,本blog的目的是总结一下遇到的坑和解决办法,以便后来人少走弯路! 以下介绍均以Python3.x为基准进行,基于windows平台的 ...
-
DOM-使用节点
节点类型 DOM规定:整个文档是一个文档节点,每个标签是一个元素节点,元素包含的文本是文本节点,元素的属性是一个属性节点,注释属于注释节点,如此等等: 每个节点都有一个nodeType属性,用于标明节 ...