BZOJ4916 神犇和蒟蒻(欧拉函数+杜教筛)

时间:2022-08-31 23:58:39

  第一问是来搞笑的。由欧拉函数的计算公式容易发现φ(i2)=iφ(i)。那么可以发现φ(n2)*id(n)(此处为卷积)=Σd*φ(d)*(n/d)=nΣφ(d)=n2 。这样就有了杜教筛所要求的容易算前缀和的两个函数。一通套路即可。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<map>
using namespace std;
#define ll long long
#define P 1000000007
#define N 1000010
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,phi[N],iphi[N],prime[N],cnt,inv6=;
map<int,int> f;
bool flag[N];
inline void inc(int &x,int y){x+=y;if (x>=P) x-=P;}
int sumone(int x){return (1ll*x*(x+)>>)%P;}
int sumtwo(int x){return 1ll*x*(x+)%P*(x<<|)%P*inv6%P;}
int work(int x)
{
if (x<=min(n,N-)) return iphi[x];
if (f.find(x)!=f.end()) return f[x];
int s=sumtwo(x);
for (int i=;i<=x;i++)
{
int t=x/(x/i);
inc(s,P-1ll*(sumone(t)-sumone(i-)+P)*work(x/i)%P);
i=t;
}
f[x]=s;return s;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4916.in","r",stdin);
freopen("bzoj4916.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read();cout<<<<endl;
flag[]=;phi[]=;
for (int i=;i<=min(n,N-);i++)
{
if (!flag[i]) prime[++cnt]=i,phi[i]=i-;
for (int j=;j<=cnt&&prime[j]*i<=min(n,N-);j++)
{
flag[prime[j]*i]=;
if (i%prime[j]==) {phi[prime[j]*i]=phi[i]*prime[j];break;}
phi[prime[j]*i]=phi[i]*(prime[j]-);
}
}
for (int i=;i<=min(n,N-);i++) iphi[i]=1ll*i*phi[i]%P;
for (int i=;i<=min(n,N-);i++) inc(iphi[i],iphi[i-]);
cout<<work(n);
return ;
}

BZOJ4916 神犇和蒟蒻(欧拉函数+杜教筛)的更多相关文章

  1. BZOJ4916 神犇和蒟蒻 【欧拉函数 &plus; 杜教筛】

    题目 很久很久以前,有一只神犇叫yzy; 很久很久之后,有一只蒟蒻叫lty; 输入格式 请你读入一个整数N;1<=N<=1E9,A.B模1E9+7; 输出格式 请你输出一个整数A=\sum ...

  2. 51nod 1238 最小公倍数之和 V3 【欧拉函数&plus;杜教筛】

    首先题目中给出的代码打错了,少了个等于号,应该是 G=0; for(i=1;i<=N;i++) for(j=1;j<=N;j++) { G = (G + lcm(i,j)) % 10000 ...

  3. 51nod 1239 欧拉函数之和【欧拉函数&plus;杜教筛】

    和bzoj 3944比较像,但是时间卡的更死 设\( f(n)=\sum_{d|n}\phi(d) g(n)=\sum_{i=1}^{n}f(i) s(n)=\sum_{i=1}^{n}\phi(i) ...

  4. bzoj 3944&colon; Sum【莫比乌斯函数&plus;欧拉函数&plus;杜教筛】

    一道杜教筛的板子题. 两个都是积性函数,所以做法是一样的.以mu为例,设\( f(n)=\sum_{d|n}\mu(d) g(n)=\sum_{i=1}^{n}f(i) s(n)=\sum_{i=1} ...

  5. 51nod 1227 平均最小公倍数【欧拉函数&plus;杜教筛】

    以后这种题能用phi的就不要用mu-mu往往会带着个ln然后被卡常致死 把题目要求转换为前缀和相减的形式,写出来大概是要求这样一个式子: \[ \sum_{i=1}^{n}\sum_{j=1}^{i} ...

  6. 【luogu3768】简单的数学题 欧拉函数&lpar;欧拉反演&rpar;&plus;杜教筛

    题目描述 给出 $n$ 和 $p$ ,求 $(\sum\limits_{i=1}^n\sum\limits_{j=1}^nij\gcd(i,j))\mod p$ . $n\le 10^{10}$ . ...

  7. LG4213 【模板】杜教筛(Sum)和 BZOJ4916 神犇和蒟蒻

    P4213 [模板]杜教筛(Sum) 题目描述 给定一个正整数$N(N\le2^{31}-1)$ 求 $$ans_1=\sum_{i=1}^n\varphi(i)$$ $$ans_2=\sum_{i= ...

  8. BZOJ4916&colon; 神犇和蒟蒻【杜教筛】

    Description 很久很久以前,有一只神犇叫yzy; 很久很久之后,有一只蒟蒻叫lty; Input 请你读入一个整数N;1<=N<=1E9,A.B模1E9+7; Output 请你 ...

  9. Bzoj4916&colon; 神犇和蒟蒻

    题面 传送门 Sol 第一问puts("1") 第二问,\(\varphi(i^2)=i\varphi(i)\) 设\(\phi(n)=\sum_{i=1}^{n}i\varphi ...

随机推荐

  1. Java 集合 - HashSet

    一.源码解析 public class HashSet<E> extends AbstractSet<E> implements Set<E>, Cloneable ...

  2. 例子:Alarm Clock with voice Commands Sample

    通过本例子学习: 如何使用自定义字体文件(.TTF) 如何播放声音 动画的使用 Speech 设置闹铃 应用 设置 数据存储到IsolatedStorage 如何使用自定义字体文件(.TTF) &lt ...

  3. 数据的增量更新之EXISTS

    有时候需要实现是数据的增量更新,因为更新全量会带来时间跟数据库资源的浪费,还有可能是数据出现冗余,所以需要使用增量数据同步,下面是一个数据增量同步的小实例. ---drop table A CREAT ...

  4. HDFS入门详解

    一. 前提和设计目标 1. 硬件错误是常态,因此需要冗余,这是深入到HDFS骨头里面去了 HDFS可能由成百上千的服务器所构成,每个服务器上存储着文件系统的部分数据.我们面对的现实是构成系统的组件数目 ...

  5. ABP官方文档翻译 3&period;4 领域服务

    领域服务 介绍 IDomainService接口和DomainService类 示例 创建接口 服务实现 使用应用服务 一些探讨 为什么只有应用服务? 如何强制使用领域服务? 介绍 领域服务(或者在D ...

  6. ord&lpar;&rpar; expected string of length 1&comma; but int found

    源代码是这样: s=b'^SdVkT#S ]`Y\\!^)\x8f\x80ism' key='' for i in s:     i=ord(i)-16     key+=chr(i^32) prin ...

  7. ES6 入门Promise

    Promise是一个对象用来传递异步操作的消息,有三种状态:Pending(进行中),Resolved(已完成又称Fulfilled)和Rejected(已失败). 特点:对象状态不受外界的影响.一旦 ...

  8. 一份通过IPC&dollar;和lpk&period;dll感染方式的病毒分析报告

    样本来自52pojie论坛,从事过两年渗透开始学病毒分析后看到IPC$真是再熟悉不过. 1.样本概况 1.1 样本信息 病毒名称:3601.exe MD5值:96043b8dcc7a977b16a28 ...

  9. Java ArrayList排序方法详解

    由于其功能性和灵活性,ArrayList是 Java 集合框架中使用最为普遍的集合类之一.ArrayList 是一种 List 实现,它的内部用一个动态数组来存储元素,因此 ArrayList 能够在 ...

  10. 英文版Ubuntu18&period;10安装搜狗输入法过程&lpar;图文并茂,亲自尝试!&rpar;

    英文版Ubuntu18.10安装搜狗输入法过程 过程比较艰辛,折腾了好长的时间,不过最终还是装好了,特记录一下! 首先去搜狗输入法网址下载Linux版本:https://pinyin.sogou.co ...