Problem Description
For a decimal number x with n digits (AnAn-1An-2 ... A2A1), we define its weight as F(x) = An * 2n-1 + An-1 * 2n-2 + ... + A2 * 2 + A1 * 1. Now you are given two numbers A and B, please calculate how many numbers are there between 0 and B, inclusive, whose weight is no more than F(A).
Input
The first line has a number T (T <= 10000) , indicating the number of test cases.
For each test case, there are two numbers A and B (0 <= A,B < 109)
For each test case, there are two numbers A and B (0 <= A,B < 109)
Output
For every case,you should output "Case #t: " at first, without quotes. The t is the case number starting from 1. Then output the answer.
Sample Input
3
0 100
1 10
5 100
Sample Output
Case #1: 1
Case #2: 2
Case #3: 13
Source
#include <stdio.h>
#include <vector>
#include <string.h>
using namespace std;
vector <int> num;
int dp[][];
//dp状态设计成dp[pos][remain],remain表示还剩多少fA可以分配
int dfs(int pos, int remain, bool limit) //limit表示后面的数是否能乱填
{
if (pos == -) return remain >= ;
if (!limit && ~dp[pos][remain]) return dp[pos][remain];
int end = limit?num[pos]:;
int res = ;
for (int i = ; i <= end; i ++)
{
res += dfs(pos-, remain-(<<pos)*i, limit && (i == end));
}
if (!limit) dp[pos][remain] = res;
return res;
} int main()
{
int t;
scanf("%d", &t);
memset(dp, -,sizeof(dp));
for (int ca = ; ca <= t; ca ++)
{
int A, B;
scanf("%d %d", &A, &B);
num.clear();
while(B)
{
num.push_back(B % );
B /= ;
}
int fa = ;
for (int i = ; A; A /= , ++ i) fa += ( << i) * (A % );
printf("Case #%d: %d\n", ca, dfs(num.size()-, +fa, ));
}
return ;
}
数位DP模板(HDU 4734)