这个知识点很重要,但是,我不懂。
第一个问题:为什么要做正则化?
In mathematics, statistics, and computer science, particularly in the fields of machine learning and inverse problems, regularization is a process of introducing additional information in order to solve an ill-posed problem or to prevent overfitting.
And, what is ill-posed problem?... ...
And, what is overfitting? In statistics, overfitting is "the production of an analysis that corresponds too closely or exactly to a particular set of data, and may therefore fail to fit additional data or predict future observations reliably", as the next figure shows.
Figure 1. The green curve represents an overfitted model and the black line represents a regularized model. While the green line best follows the training data, it is too dependent on that data and it is likely to have a higher error rate on new unseen data, compared to the black line.
第二个问题:常用的正则化方法有哪些?
第三个问题:The advantages fo Tikhonov regularizatioin
The fourth question: Tikhonov regularization
Tikhonov regularization, named for Andrey Tikhonov, is the most commonly used method of regularization of ill-posed problems. In statistics, the method is known as ridge regression, in machine learning it is known as weight decay, and with multiple independent discoveries, it is also variously known as the Tikhonov–Miller method, the Phillips–Twomey method, the constrained linear inversion method, and the method of linear regularization. It is related to the Levenberg–Marquardt algorithm for non-linear least-squares problems.
Suppose that for a known matrix A and vector b, we wish to find a vector x such that:
The standard approach is ordinary least squares linear regression. However, if no x satisfies the equation or more than one x does—that is, the solution is not unique—the problem is said to be ill posed. In such cases, ordinary least squares estimation leads to an overdetermined (over-fitted), or more often an underdetermined (under-fitted) system of equations. Most real-world phenomena have the effect of low-pass filters in the forward direction where A maps x to b. Therefore, in solving the inverse-problem, the inverse mapping operates as a high-pass filter that has the undesirable tendency of amplifying noise (eigenvalues / singular values are largest in the reverse mapping where they were smallest in the forward mapping). In addition, ordinary least squares implicitly nullifies every element of the reconstructed version of x that is in the null-space of A, rather than allowing for a model to be used as a prior for . Ordinary least squares seeks to minimize the sum of squared residuals, which can be compactly written as:
where is the Euclidean norm.
In order to give preference to a particular solution with desirable properties, a regularization term can be included in this minimization:
for some suitably chosen Tikhonov matrix, . In many cases, this matrix is chosen as a multiple of the identity matrix (), giving preference to solutions with smaller norms; this is known as L2 regularization.[1] In other cases, high-pass operators (e.g., a difference operator or a weighted Fourier operator) may be used to enforce smoothness if the underlying vector is believed to be mostly continuous. This regularization improves the conditioning of the problem, thus enabling a direct numerical solution. An explicit solution, denoted by , is given by:
- , process can be seen at (https://blog.csdn.net/nomadlx53/article/details/50849941).
The effect of regularization may be varied via the scale of matrix . For this reduces to the unregularized least squares solution provided that (ATA)−1 exists.
L2 regularization is used in many contexts aside from linear regression, such as classification with logistic regression or support vector machines,[2] and matrix factorization.[3]
对于y=Xw,若X无解或有多个解,称这个问题是病态的。病态问题下,用最小二乘法求解会导致过拟合或欠拟合,用正则化来解决。
设X为m乘n矩阵:
- 过拟合模型:m<<nm<<n,欠定方程,存在多解的可能性大;
- 欠拟合模型:m>>nm>>n,超定方程,可能无解,或者有解但准确率很低
REF:
https://blog.csdn.net/darknightt/article/details/70179848
Tikhonov regularization 吉洪诺夫 正则化的更多相关文章
-
matlab-罗曼诺夫斯基准则剔除粗大值
罗曼诺夫斯基准则原理 罗曼诺夫斯基准则又称 t检验准则,其特点是首先删除一个可疑的的测得值,然后按 t分布检验被剔除的测量值是否含有粗大误差 罗曼诺夫斯基准则 1)选取合适的显著度a,选择合适的数 ...
-
Tikhonov regularization和岭回归
就实现过程来讲,两者是一样的,都是最小二乘法的改进,对于病态矩阵的正则化,只不过分析的角度不一样,前者是解决机器学习中过拟合问题,机器学习一般是监督学习,是从学习角度来说的,后者是数学家搞的,是为了解 ...
- 切诺夫界证明(Chernoff bound)
-
软阈值迭代算法(ISTA)和快速软阈值迭代算法(FISTA)
缺月挂疏桐,漏断人初静. 谁见幽人独往来,缥缈孤鸿影. 惊起却回头,有恨无人省. 拣尽寒枝不肯栖,寂寞沙洲冷.---- 苏轼 更多精彩内容请关注微信公众号 "优化与算法" ISTA ...
-
Machine learning | 机器学习中的范数正则化
目录 1. \(l_0\)范数和\(l_1\)范数 2. \(l_2\)范数 3. 核范数(nuclear norm) 参考文献 使用正则化有两大目标: 抑制过拟合: 将先验知识融入学习过程,比如稀疏 ...
-
Stanford机器学习笔记-3.Bayesian statistics and Regularization
3. Bayesian statistics and Regularization Content 3. Bayesian statistics and Regularization. 3.1 Und ...
-
柯尔莫可洛夫-斯米洛夫检验(Kolmogorov–Smirnov test,K-S test)
柯尔莫哥洛夫-斯米尔诺夫检验(Колмогоров-Смирнов检验)基于累计分布函数,用以检验两个经验分布是否不同或一个经验分布与另一个理想分布是否不同. 在进行cumulative probab ...
-
[No0000119]什么是柳比歇夫的时间事件记录法
上图是我过去一年来做的时间事件记录中的某几天的记录文字.从接触到这种方法以来,也就是2009年的7月31日到今天,我已经作了一年多时间的记录.那么什么是时间事件记录?很简单,就像那两幅图片上所展示的, ...
-
正则化--L2正则化
请查看以下泛化曲线,该曲线显示的是训练集和验证集相对于训练迭代次数的损失. 图 1 显示的是某个模型的训练损失逐渐减少,但验证损失最终增加.换言之,该泛化曲线显示该模型与训练集中的数据过拟合.根据奥卡 ...
随机推荐
-
CGI与Servlet的比较
转自:http://www.maxhis.info/java/cgi-vs-servlet/ 谢! 概括来说,CGI和Servlet可以完成相同的功能. 一:CGI(Common Gateway In ...
-
【HTML】字符(Glyphs)收集
Special Characters " " " quotation mark u+0022 ISOnum p:before { content:"\0022& ...
-
配置ubuntu 16.04.1 LTS odoo 10.0开发环境
使用VMware Fusion 8.5.0创建ubuntu 64bit虚拟机:使用ubuntu-16.04.1-desktop-amd64.iso镜像缺省安装ubuntu,用户名odoo,密码1234 ...
-
转 Web移动应用调试工具——Weinre
如今人们也越来越习惯在手机上浏览网页,而在手机上这些针对桌面浏览器设计的网页经常惨不忍睹.Web应用开发者需要针对手机进行界面的重新设计,但是手机上并没有称心如意的调试工具(如Firebug.web ...
-
Android WebView挂马漏洞--各大厂商纷纷落马
本文章由Jack_Jia编写,转载请注明出处. 文章链接: http://blog.csdn.net/jiazhijun/article/details/11131891 作者:Jack_Jia ...
-
vue2.0+element+node+webpack搭建的一个简单的后台管理界面
闲聊: 今天是六一儿童节哟,小颖祝大家节日快乐哈哈哈.其实这个demo小颖断断续续做了将近两个礼拜了,心塞的,其实这个也没有多难,主要是小颖有点最近事情有点多,所以就把这个一直拖着,今天好不容易做好了 ...
-
sql声明变量,及if -else语句、while语句的用法
--声明变量,同时为变量赋值 declare @n print @n --单独使用一条语句为变量复制 print @n print @n --通过set赋值与select复制的区别 select @n ...
-
day07 深浅拷贝
今日概要 深浅拷贝(重点) 文件操作 详细内容 直接赋值: 直接将对象的引用赋值给另一个对象 v1=1000 v2=v1 #v1 v2指向同一个内存地址 print(id(v1),id(v2))#相等 ...
-
vue 项目记录.路飞学城(一)
前情提要: 通过vue 搭建路飞学城记录 一:项目分析 二:项目搭建 1:创建项目 vue init webpack luffy 2:初始化项目 清除默认的HelloWorld.vue组件和APP. ...
-
2016.3.24 OneZero站立会议
会议时间:2016.3.24 15:35-15:55 会议成员:王巍 夏一名 冉华 张敏 会议内容: 1.确立UI界面原形(见http://www.cnblogs.com/zhangminss/p/5 ...