Python科学计算基础包-Numpy

时间:2022-08-30 23:31:46

一、Numpy概念

Numpy(Numerical Python的简称)是Python科学计算的基础包。它提供了以下功能:

  1. 快速高效的多维数组对象ndarray。
  2. 用于对数组执行元素级计算以及直接对数组执行数学运算的函数。
  3. 用于读写硬盘上基于数组的数据集的工具。
  4. 线性代数运算、傅里叶变换,以及随机数生成。
  5. 用于将C、C++、Fortran代码集成到Python的工具。

除了为Python提供快速的数组处理能力,Numpy在数据分析方面还有另外一个主要作用,即作为在算法之间传递数据的容器。对于数值型数据,Numpy数组在存储和处理数据时要比内置的Python数据结构高效的多。此外,由低级语言(比如C和Fortran)编写的库可以直接操作Numpy数组中的数据,无需进行任何数据复制工作。

二、Numpy的突出优势

与Python的基本数据类型相比,其具有以下突出优势:

  1. 提供功能更强大的高维数组(N-dimensional)对象
  2. 强大的广播功能(broadcasting),便于矢量化数组操作(直接对数组进行数据处理,而不需要编写循环)
  3. 集成了 C/C++ 以及 Fortran代码编写的工具
  4. 包含常用的线性代数、傅里叶变换,以及随机数生成
  5. 提供易用的C API,可以将数据传递到使用低级语言编写的外部库,也可以使外部库返回NumPy数组数据到Python
  6. 通用的数组算法,例如:sorting,unique和set等操作

NumPy提供了两种基本的对象:ndarray(N-dimensional array object)和ufunc(universal function object)。ndarray用来存储单一数据类型的多维数组,ufunc是对数组进行处理的函数。

三、ndarray对象

Numpy的核心是ndarray对象,它封装了同质数据类型的n维数组,与python序列有以下区别:

ndarray在创建时有固定大小:不同于python中的列表,更改ndarray的大小将创建一个新的数组并删除原始数据 ndarray中的元素有相同的数据类型 ndarray便于对大量数据进行高级数学操作:通常会比python内置序列更高效也更简单 越来越多的基于python的科学和数学软件使用ndarray数组:只知道python的内置序列类型是不够的,还需要知道如何使用ndaray数组

ndarray数据类型

Numpy支持比Python更多种类的数值类型,参见:数据类型

numpy数据类型 python类型 描述
bool_ bool 布尔(True或False),存储为一个字节
int_ int 默认整数类型(与C long相同;通常为int64或int32)
intc   与C int(通常为int32或int64)相同
intp   用于索引的整数(与C ssize_t相同;通常为int32或int64)
int8   字节(-128到127)
int16   整数(-32768到32767)
int32   整数(-2147483648至2147483647)
int64   整数(-9223372036854775808至9223372036854775807)
uint8   无符号整数(0到255)
uint16   无符号整数(0到65535)
uint32   无符号整数(0至4294967295)
uint64   无符号整数(0至18446744073709551615)
float_ float float64的简写。
float16   半精度浮点:符号位,5位指数,10位尾数
float32   单精度浮点:符号位,8位指数,23位尾数
float64   双精度浮点:符号位,11位指数,52位尾数
complex_ complex complex128的简写。
complex64   复数,由两个32位浮点(实数和虚数分量)
complex128   复数,由两个64位浮点(实数和虚数分量)
1
2
3
4
5
6
7
8
9
10
11
12
# 作为类型名称设置数组中元素的类型,为了向后兼容,也可以使用float或字符串'float'
x = np.array([1,2,3],dtype=np.float)
print x
 
# 查看数据类型
print x.dtype
 
# 作为单值类型转化函数
print np.int32(1.3)
 
# 转换数组的类型,会产生新的副本
print x.astype(np.int)

结果:

1
2
3
4
[ 123.]
float64
1
[1 2 3]

感谢阅读上海尚学堂文章,获取更多内容或支持请点击上海python培训

Python科学计算基础包-Numpy的更多相关文章

  1. 科学计算基础包——Numpy

    一.NumPy简介 NumPy是高性能科学计算和数据分析的基础包.它是pandas等其他各种工具的基础. 1.NumPy的主要功能 (1)ndarray:一个多维数组结构,高效且节省空间. (2)无需 ...

  2. windows下安装python科学计算环境,numpy scipy scikit ,matplotlib等

    安装matplotlib: pip install matplotlib 背景: 目的:要用Python下的DBSCAN聚类算法. scikit-learn 是一个基于SciPy和Numpy的开源机器 ...

  3. python科学计算库的numpy基础知识,完美抽象多维数组(原创)

    #导入科学计算库 #起别名避免重名 import numpy as np #小技巧:从外往内看==从左往右看 从内往外看==从右往左看 #打印版本号 print(np.version.version) ...

  4. python 科学计算基础库安装

    1.numpyNumPy(Numeric Python)是用Python进行科学计算的基本软件包. NumPy是Python编程语言的扩展,增加了对大型多维数组和矩阵的支持,以及一个大型的高级数学函数 ...

  5. Python科学计算库灬numpy

    Numpy NumPy是一个功能强大的Python库,主要用于对多维数组执行计算.Numpy许多底层函数实际上是用C编写的,因此它的矩阵向量计算速度是原生Python中无法比拟的. numpy属性 维 ...

  6. python科学计算基础知识

    1.导入基本函数库 import numpy as np 2.获取矩阵元素字节数 a=np.array([1,2,3],dtype=np.float32) a.itemsizeoutput: 4 3. ...

  7. Python科学计算:用NumPy快速处理数据

    创建数组 import numpy as np a=np.array([1,2,3]) b=np.array([[1,2,3],[4,5,6],[7,8,9]]) b[1,1]=10 print(a. ...

  8. Python科学计算学习一 NumPy 快速处理数据

    1 创建数组 (1) array(boject, dtype=None, copy=True, order=None, subok=False, ndmin=0) a = array([1, 2, 3 ...

  9. Python科学计算库

    Python科学计算库 一.numpy库和matplotlib库的学习 (1)numpy库介绍:科学计算包,支持N维数组运算.处理大型矩阵.成熟的广播函数库.矢量运算.线性代数.傅里叶变换.随机数生成 ...

随机推荐

  1. 多用多学之Java中的Set,List,Map

            很长时间以来一直代码中用的比较多的数据列表主要是List,而且都是ArrayList,感觉有这个玩意就够了.ArrayList是用于实现动态数组的包装工具类,这样写代码的时候就可以拉进 ...

  2. Subtitute

    报表导出到Excel时,日期已经被格式化,有时候日期格式带星期几,比方说"2016-12-30 星期五",或者是"2016/12/30 星期五". 我不想要星期 ...

  3. Sqlite在Windows、Linux 和 Mac OS X 上的安装过程

    一:在 Windows 上安装 SQLite 1,下载 请访问SQLite下载页面http://www.sqlite.org/download.html,从Windows 区下载预编译的二进制文件.需 ...

  4. SGU 159.Self-Replicating Numbers

    时间限制:0.5s 空间限制:6M 题意:         在b(2<b<36)进制中,找到所有长度为n(0<n<2000)的自守数k,满足k^2%b^n=k,字典序输出.   ...

  5. React和Vue的组件更新比较

    p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 24.0px "Helvetica Neue"; color: #404040 } p. ...

  6. Android为TV端助力 集成第三方播放器,实现全屏播放

    下面这Demo链接:Android实现全屏播放,各种格式支持直播,点播,不收费!

  7. concat&lowbar;ws 使用在hive spark-sql上的区别

    concat_ws() 在hive中,被连接对象必须为string或者array<string>,否则报错如下: hive> select concat_ws(',',unix_ti ...

  8. 图解Golang的GC算法

    虽然Golang的GC自打一开始,就被人所诟病,但是经过这么多年的发展,Golang的GC已经改善了非常多,变得非常优秀了. 以下是Golang GC算法的里程碑: v1.1 STW v1.3 Mar ...

  9. ThinkPHP&plus;JQuery实现文件的异步上传

    前端代码 <!DOCTYPE html> <html> <head lang="en"> <meta charset="UTF- ...

  10. DEX、ODEX、OAT文件&amp&semi;Dalvik和ART虚拟机

    https://www.jianshu.com/p/389911e2cdfb https://www.jianshu.com/p/a468e714aca7 ODEX是安卓上的应用程序apk中提取出来的 ...