基于Java代码实现游戏服务器生成全局唯一ID的方法汇总

时间:2022-08-30 21:01:30

在服务器系统开发时,为了适应数据大并发的请求,我们往往需要对数据进行异步存储,特别是在做分布式系统时,这个时候就不能等待插入数据库返回了取自动id了,而是需要在插入数据库之前生成一个全局的唯一id,使用全局的唯一id,在游戏服务器中,全局唯一的id可以用于将来合服方便,不会出现键冲突。也可以将来在业务增长的情况下,实现分库分表,比如某一个用户的物品要放在同一个分片内,而这个分片段可能是根据用户id的范围值来确定的,比如用户id大于1000小于100000的用户在一个分片内。目前常用的有以下几种:

1,Java 自带的UUID.

UUID.randomUUID().toString(),可以通过服务程序本地产生,ID的生成不依赖数据库的实现。

优势:

本地生成ID,不需要进行远程调用。

全局唯一不重复。

水平扩展能力非常好。

劣势:

ID有128 bits,占用的空间较大,需要存成字符串类型,索引效率极低。

生成的ID中没有带Timestamp,无法保证趋势递增,数据库分库分表时不好依赖

2,基于Redis的incr方法

Redis本身是单线程操作的,而incr更保证了一种原子递增的操作。而且支持设置递增步长。

优势:

部署方便,使用简单,只需要调用一个redis的api即可。

可以多个服务器共享一个redis服务,减少共享数据的开发时间。

Redis可以群集部署,解决单点故障的问题。

劣势:

如果系统太庞大的话,n多个服务同时向redis请求,会造成性能瓶颈。

3,来自Flicker的解决方案

这个解决方法是基于数据库自增id的,它使用一个单独的数据库专门用于生成id。详细的大家可以网上找找,个人觉得使用挺麻烦的,不建议使用。

4,Twitter Snowflake

snowflake是twitter开源的分布式ID生成算法,其核心思想是:产生一个long型的ID,使用其中41bit作为毫秒数,10bit作为机器编号,12bit作为毫秒内序列号。这个算法单机每秒内理论上最多可以生成1000*(2^12)个,也就是大约400W的ID,完全能满足业务的需求。

根据snowflake算法的思想,我们可以根据自己的业务场景,产生自己的全局唯一ID。因为Java中long类型的长度是64bits,所以我们设计的ID需要控制在64bits。

优点:高性能,低延迟;独立的应用;按时间有序。

缺点:需要独立的开发和部署。

比如我们设计的ID包含以下信息:

| 41 bits: Timestamp | 3 bits: 区域 | 10 bits: 机器编号 | 10 bits: 序列号 |

产生唯一ID的Java代码

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
/**
* 自定义 ID 生成器
* ID 生成规则: ID长达 64 bits
*
* | 41 bits: Timestamp (毫秒) | 3 bits: 区域(机房) | 10 bits: 机器编号 | 10 bits: 序列号 |
*/
public class GameUUID{
// 基准时间
private long twepoch = 1288834974657L; //Thu, 04 Nov 2010 01:42:54 GMT
// 区域标志位数
private final static long regionIdBits = 3L;
// 机器标识位数
private final static long workerIdBits = 10L;
// 序列号识位数
private final static long sequenceBits = 10L;
// 区域标志ID最大值
private final static long maxRegionId = -1L ^ (-1L << regionIdBits);
// 机器ID最大值
private final static long maxWorkerId = -1L ^ (-1L << workerIdBits);
// 序列号ID最大值
private final static long sequenceMask = -1L ^ (-1L << sequenceBits);
// 机器ID偏左移10位
private final static long workerIdShift = sequenceBits;
// 业务ID偏左移20位
private final static long regionIdShift = sequenceBits + workerIdBits;
// 时间毫秒左移23位
private final static long timestampLeftShift = sequenceBits + workerIdBits + regionIdBits;
private static long lastTimestamp = -1L;
private long sequence = 0L;
private final long workerId;
private final long regionId;
public GameUUID(long workerId, long regionId) {
// 如果超出范围就抛出异常
if (workerId > maxWorkerId || workerId < 0) {
throw new IllegalArgumentException("worker Id can't be greater than %d or less than 0");
}
if (regionId > maxRegionId || regionId < 0) {
throw new IllegalArgumentException("datacenter Id can't be greater than %d or less than 0");
}
this.workerId = workerId;
this.regionId = regionId;
}
public GameUUID(long workerId) {
// 如果超出范围就抛出异常
if (workerId > maxWorkerId || workerId < 0) {
throw new IllegalArgumentException("worker Id can't be greater than %d or less than 0");
}
this.workerId = workerId;
this.regionId = 0;
}
public long generate() {
return this.nextId(false, 0);
}
/**
* 实际产生代码的
*
* @param isPadding
* @param busId
* @return
*/
private synchronized long nextId(boolean isPadding, long busId) {
long timestamp = timeGen();
long paddingnum = regionId;
if (isPadding) {
paddingnum = busId;
}
if (timestamp < lastTimestamp) {
try {
throw new Exception("Clock moved backwards. Refusing to generate id for " + (lastTimestamp - timestamp) + " milliseconds");
} catch (Exception e) {
e.printStackTrace();
}
}
//如果上次生成时间和当前时间相同,在同一毫秒内
if (lastTimestamp == timestamp) {
//sequence自增,因为sequence只有10bit,所以和sequenceMask相与一下,去掉高位
sequence = (sequence + 1) & sequenceMask;
//判断是否溢出,也就是每毫秒内超过1024,当为1024时,与sequenceMask相与,sequence就等于0
if (sequence == 0) {
//自旋等待到下一毫秒
timestamp = tailNextMillis(lastTimestamp);
}
} else {
// 如果和上次生成时间不同,重置sequence,就是下一毫秒开始,sequence计数重新从0开始累加,
// 为了保证尾数随机性更大一些,最后一位设置一个随机数
sequence = new SecureRandom().nextInt(10);
}
lastTimestamp = timestamp;
return ((timestamp - twepoch) << timestampLeftShift) | (paddingnum << regionIdShift) | (workerId << workerIdShift) | sequence;
}
// 防止产生的时间比之前的时间还要小(由于NTP回拨等问题),保持增量的趋势.
private long tailNextMillis(final long lastTimestamp) {
long timestamp = this.timeGen();
while (timestamp <= lastTimestamp) {
timestamp = this.timeGen();
}
return timestamp;
}
// 获取当前的时间戳
protected long timeGen() {
return System.currentTimeMillis();
}
}

使用自定义的这种方法需要注意的几点:

为了保持增长的趋势,要避免有些服务器的时间早,有些服务器的时间晚,需要控制好所有服务器的时间,而且要避免NTP时间服务器回拨服务器的时间;在跨毫秒时,序列号总是归0,会使得序列号为0的ID比较多,导致生成的ID取模后不均匀,所以序列号不是每次都归0,而是归一个0到9的随机数。

上面说的这几种方式我们可以根据自己的需要去选择。在游戏服务器开发中,根据自己的游戏类型选择,比如手机游戏,可以使用简单的redis方式,简单不容易出错,由于这种游戏单服并发新建id量并不太大,完全可以满足需要。而对于大型的世界游戏服务器,它本身就是以分布式为主的,所以可以使用snowflake的方式,上面的snowflake代码只是一个例子,需要自己根据自己的需求去定制,所以有额外的开发量,而且要注意上述所说的注意事项。

以上所述是小编给大家介绍的基于Java代码实现游戏服务器生成全局唯一ID的方法汇总,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对服务器之家网站的支持!

原文链接:http://www.cnblogs.com/wgslucky/archive/2016/10/27/6006157.html