克隆选择算法-python实现

时间:2022-08-30 11:47:29

CSAIndividual.py

 import numpy as np
import ObjFunction class CSAIndividual: '''
individual of clone selection algorithm
''' def __init__(self, vardim, bound):
'''
vardim: dimension of variables
bound: boundaries of variables
'''
self.vardim = vardim
self.bound = bound
self.fitness = 0.
self.trials = 0 def generate(self):
'''
generate a random chromsome for clone selection algorithm
'''
len = self.vardim
rnd = np.random.random(size=len)
self.chrom = np.zeros(len)
for i in xrange(0, len):
self.chrom[i] = self.bound[0, i] + \
(self.bound[1, i] - self.bound[0, i]) * rnd[i] def calculateFitness(self):
'''
calculate the fitness of the chromsome
'''
self.fitness = ObjFunction.GrieFunc(
self.vardim, self.chrom, self.bound)

CSA.py

 import numpy as np
from CSAIndividual import CSAIndividual
import random
import copy
import matplotlib.pyplot as plt class CloneSelectionAlgorithm: '''
the class for clone selection algorithm
''' def __init__(self, sizepop, vardim, bound, MAXGEN, params):
'''
sizepop: population sizepop
vardim: dimension of variables
bound: boundaries of variables
MAXGEN: termination condition
params: algorithm required parameters, it is a list which is consisting of[beta, pm, alpha_max, alpha_min]
'''
self.sizepop = sizepop
self.vardim = vardim
self.bound = bound
self.MAXGEN = MAXGEN
self.params = params
self.population = []
self.fitness = np.zeros(self.sizepop)
self.trace = np.zeros((self.MAXGEN, 2)) def initialize(self):
'''
initialize the population of ba
'''
for i in xrange(0, self.sizepop):
ind = CSAIndividual(self.vardim, self.bound)
ind.generate()
self.population.append(ind) def evaluation(self):
'''
evaluation the fitness of the population
'''
for i in xrange(0, self.sizepop):
self.population[i].calculateFitness()
self.fitness[i] = self.population[i].fitness def solve(self):
'''
the evolution process of the clone selection algorithm
'''
self.t = 0
self.initialize()
self.evaluation()
bestIndex = np.argmax(self.fitness)
self.best = copy.deepcopy(self.population[bestIndex])
while self.t < self.MAXGEN:
self.t += 1
tmpPop = self.reproduction()
tmpPop = self.mutation(tmpPop)
self.selection(tmpPop)
best = np.max(self.fitness)
bestIndex = np.argmax(self.fitness)
if best > self.best.fitness:
self.best = copy.deepcopy(self.population[bestIndex]) self.avefitness = np.mean(self.fitness)
self.trace[self.t - 1, 0] = \
(1 - self.best.fitness) / self.best.fitness
self.trace[self.t - 1, 1] = (1 - self.avefitness) / self.avefitness
print("Generation %d: optimal function value is: %f; average function value is %f" % (
self.t, self.trace[self.t - 1, 0], self.trace[self.t - 1, 1]))
print("Optimal function value is: %f; " % self.trace[self.t - 1, 0])
print "Optimal solution is:"
print self.best.chrom
self.printResult() def reproduction(self):
'''
reproduction
'''
tmpPop = []
for i in xrange(0, self.sizepop):
nc = int(self.params[1] * self.sizepop)
for j in xrange(0, nc):
ind = copy.deepcopy(self.population[i])
tmpPop.append(ind)
return tmpPop def mutation(self, tmpPop):
'''
hypermutation
'''
for i in xrange(0, self.sizepop):
nc = int(self.params[1] * self.sizepop)
for j in xrange(1, nc):
rnd = np.random.random(1)
if rnd < self.params[0]:
# alpha = self.params[
# 2] + self.t * (self.params[3] - self.params[2]) / self.MAXGEN
delta = self.params[2] + self.t * \
(self.params[3] - self.params[3]) / self.MAXGEN
tmpPop[i * nc + j].chrom += np.random.normal(0.0, delta, self.vardim)
# tmpPop[i * nc + j].chrom += alpha * np.random.random(
# self.vardim) * (self.best.chrom - tmpPop[i * nc +
# j].chrom)
for k in xrange(0, self.vardim):
if tmpPop[i * nc + j].chrom[k] < self.bound[0, k]:
tmpPop[i * nc + j].chrom[k] = self.bound[0, k]
if tmpPop[i * nc + j].chrom[k] > self.bound[1, k]:
tmpPop[i * nc + j].chrom[k] = self.bound[1, k]
tmpPop[i * nc + j].calculateFitness()
return tmpPop def selection(self, tmpPop):
'''
re-selection
'''
for i in xrange(0, self.sizepop):
nc = int(self.params[1] * self.sizepop)
best = 0.0
bestIndex = -1
for j in xrange(0, nc):
if tmpPop[i * nc + j].fitness > best:
best = tmpPop[i * nc + j].fitness
bestIndex = i * nc + j
if self.fitness[i] < best:
self.population[i] = copy.deepcopy(tmpPop[bestIndex])
self.fitness[i] = best def printResult(self):
'''
plot the result of clone selection algorithm
'''
x = np.arange(0, self.MAXGEN)
y1 = self.trace[:, 0]
y2 = self.trace[:, 1]
plt.plot(x, y1, 'r', label='optimal value')
plt.plot(x, y2, 'g', label='average value')
plt.xlabel("Iteration")
plt.ylabel("function value")
plt.title("Clone selection algorithm for function optimization")
plt.legend()
plt.show()

运行程序:

 if __name__ == "__main__":

     bound = np.tile([[-600], [600]], 25)
csa = CSA(50, 25, bound, 500, [0.3, 0.4, 5, 0.1])
csa.solve()

ObjFunction见简单遗传算法-python实现

克隆选择算法-python实现的更多相关文章

  1. pageRank算法 python实现

    一.什么是pagerank PageRank的Page可是认为是网页,表示网页排名,也可以认为是Larry Page(google 产品经理),因为他是这个算法的发明者之一,还是google CEO( ...

  2. 常见排序算法-Python实现

    常见排序算法-Python实现 python 排序 算法 1.二分法     python    32行 right = length-  :  ]   ):  test_list = [,,,,,, ...

  3. kmp算法python实现

    kmp算法python实现 kmp算法 kmp算法用于字符串的模式匹配,也就是找到模式字符串在目标字符串的第一次出现的位置比如abababc那么bab在其位置1处,bc在其位置5处我们首先想到的最简单 ...

  4. KMP算法-Python版

                               KMP算法-Python版 传统法: 从左到右一个个匹配,如果这个过程中有某个字符不匹配,就跳回去,将模式串向右移动一位.这有什么难的? 我们可以 ...

  5. 压缩感知重构算法之IRLS算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  6. 压缩感知重构算法之OLS算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  7. 压缩感知重构算法之CoSaMP算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  8. 压缩感知重构算法之IHT算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  9. 压缩感知重构算法之SP算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

随机推荐

  1. 对接第三方支付接口-获取http中的返回参数

    这几天对接第三方支付接口,在回调通知里获取返回参数,有一家返回的json格式,请求参数可以从标准输入流中获取. //1.解析参数 , 读取请求内容 BufferedReader br; String ...

  2. osg 笔记一 (转)

    场景图形采用一种自顶向下的,分层的树状数据结构来组织空间数据集,以提高渲染的效率 场景图形树结构的顶部是一个根节点,从根节点向下延伸,各个组节点中均包含了几何信息和用于控制其外观的渲染状态信息.根节点 ...

  3. 谁才是最快的消息队列&colon;ActiveMQ&comma; RabbitMQ&lbrack;转&rsqb;

    Lately I performed a message queue benchmark, comparing several queuing frameworks (RabbitMQ, Active ...

  4. engine中调整Element的上下显示顺序&lpar;遮盖&rpar;

    pGraphicsContainer.AddElement(pElement, 0); Engine中IGraphicsContainer类似于栈,加Element时,默认加到第一个,所以会将之前加的 ...

  5. UVA-10037 Bridge---过河问题进阶版(贪心)

    题目链接: https://vjudge.net/problem/UVA-10037 题目大意: N个人夜里过河,总共只有一盏灯,每次最多过两个人,然后需要有人将灯送回 才能继续过人,每个人过桥都需要 ...

  6. WebBrowser Cookie

    WebBrowser的Cookie操作 .在WebBrowser中获取Cookie CookieContainer myCookieContainer = new CookieContainer(); ...

  7. scipy优化器optimizer

    #optimazer优化器 from scipy.optimize import minimize def rosem(x): return sum(100.0*(x[1:]-x[:-1])**2.0 ...

  8. Analytics&period;js简介

    analytics.js JavaScript代码段是一种可用于衡量用户与您网站的互动情况的全新方式.它与之前的跟踪代码ga.js类似,但为开发者自定义实现方案提供了更大的灵活性. analytics ...

  9. UML(一)下载与安装

    三步 Step1 下载绿色版: http://www.pc6.com/softview/SoftView_64080.html Step2 下载汉化包,(提供一个地址): http://downloa ...

  10. chrony 时间同步

    RHEL7.4 192.168.100.1 作为时间服务器,其它主机到这台来同步时间. 时间服务器安装及配置:#yum install chrony --RHEL7默认已安装chrony,而没有安装n ...