The Microsoft Research Outreach team has worked extensively with the external research community to enable adoption of cloud-based research infrastructure over the past few years. Through this process, we experienced the ubiquity of Jim Gray’s fourth paradigm of discovery based on data-intensive science – that is, almost all research projects have a data component to them. This data deluge also demonstrated a clear need for curated and meaningful datasets in the research community, not only in computer science but also in interdisciplinary and domain sciences.
Today we are excited to launch Microsoft Research Open Data – a new data repository in the cloud dedicated to facilitating collaboration across the global research community. Microsoft Research Open Data, in a single, convenient, cloud-hosted location, offers datasets representing many years of data curation and research efforts by Microsoft that were used in published research studies.
Why we are investing in this
The goal is to provide a simple platform to Microsoft researchers and collaborators to share datasets and related research technologies and tools. Microsoft Research Open Data is designed to simplify access to these datasets, facilitate collaboration between researchers using cloud-based resources and enable reproducibility of research. We will continue to shape and grow this repository and add features based on feedback from the community.
We recognize that there are dozens of data repositories already in use by researchers and expect that the capabilities of this repository will augment existing efforts.
Figure 1 – Dataset in Microsoft Research Open Data
“This is a game changer for the big data community. Initiatives like Microsoft Research Open Data reduce barriers to data sharing and encourage reproducibility by leveraging the power of cloud computing”
-Sam Madden, Professor, Massachusetts Institute of Technology
With data growing at an exponential rate, perceived to be over 150 ZB of data available by 2025, it is now recognized that we need to prioritize bringing processing to data versus relying on data movement through Internet bandwidth that is growing at a much slower pace. We believe that there is real utility in providing an option to bring the processing to the data. Therefore, in addition to providing an option to download the data assets, users can also copy datasets directly to an Azure based Data Science virtual machine, as shown in Figure 2.
Figure 2 – Data copied from microsoftopendata.com to an Azure based Linux virtual machine
The Data Science virtual machine comes preloaded with a variety of development tools popular with researchers and practitioners as can been seen in Figure 3.
Figure 3 Linux Data Science virtual machine
“I am often asked to share my research data and the public sharing I have done in the past has been popular. Coordinating and cataloging these datasets in one place with Azure will be helpful for both internal and external researchers, giving them easy access, encouraging collaboration, and providing convenient cloud-based access to the wealth of Microsoft Research shared data.”
-John Krumm, Principal Researcher, Microsoft Research AI
Datasets in Microsoft Research Open Data are categorized by their primary research area, as shown in Figure 4. You can find links to research projects or publications with the dataset. You can browse available datasets and download them or copy them directly to an Azure subscription through an automated workflow. To the extent possible, the repository meets the highest standards for data sharing to ensure that datasets are findable, accessible, interoperable and reusable; the entire corpus does not contain personally identifiable information. The site will continue to evolve as we get feedback from users.
Figure 4 – Dataset Categories
Microsoft Research Open Data is an outcome of the Microsoft Research Outreach Data science program and was made possible by a collaboration between many teams at Microsoft, Microsoft researchers, our industry partners, and our academic advisors.
We would love to hear your comments and feedback! Please send us a note via the Feedback feature on the sitehttp://microsoftopendata.com and tell us what you think.
Announcing Microsoft Research Open Data – Datasets by Microsoft Research now available in the cloud的更多相关文章
-
未能加载包“Microsoft SQL Server Data Tools”
直接在vs2013里的App_Data目录创建数据库,在服务器资源管理器中查看时报错: 未能加载包“Microsoft SQL Server Data Tools” 英文: The 'Microsof ...
-
Microsoft SQL Server Data Tools - Business Intelligence for Visual Studio 2013 http://www.microsoft.com/en-us/download/details.aspx?id=42313
Microsoft SQL Server Data Tools - Business Intelligence for Visual Studio 2013 http://www.microsoft. ...
-
“DataTable”是“System.Data.DataTable”和“Microsoft.Office.Interop.Excel.DataTable”之间的不明确的引用
“DataTable”是“System.Data.DataTable”和“Microsoft.Office.Interop.Excel.DataTable”之间的不明确的引用 造成这个错误的原因是,在 ...
-
解决VS2010在新建实体数据模型出现“在 .NET Framework Data Provider for Microsoft SQL Server Compact 3.5 中发生错误。请与提供程序供应商联系以解决此问题。”的问题
最近想试着学习ASP.NET MVC,在点击 添加--新建项--Visual C#下的数据中的ADO.NET 实体数据模型,到"选择您的数据连接"时,出现错误,"在 .N ...
-
在WebService中使用Microsoft.Practices.EnterpriseLibrary.Data配置数据库
1. 新建WebApplication1项目 1.1 新建—Web—ASP.NET Empty Web Application--WebApplication1 1.2 添加一个WebForm1 2. ...
-
Microsoft.Jet.OLEDB.4.0和Microsoft.ACE.OLEDB.12.0的区别
Microsoft.Jet.OLEDB.4.0和Microsoft.ACE.OLEDB.12.0的区别 时间 2012-12-19 20:30:12 CSDN博客原文 http://blog.cs ...
-
EF core2.1+MySQL报错'Void Microsoft.EntityFrameworkCore.Storage.Internal.RelationalParameterBuilder..ctor(Microsoft.EntityFrameworkCore.Storage.IRelationalTypeMapper)
一.使用.net core 2.0 EF mysql 运行一直报错如下: An unhandled exception occurred while processing the request. M ...
-
win10x64启动vs2010报错:未能加载C:\Windows\Microsoft.NET\Framework\v2.0.50727\microsoft.vsa.tlb
换了新电脑,因为是win10x64系统,可能是兼容性的问题吧. 启动vs2010,在启动画面直接报错:未能加载C:\Windows\Microsoft.NET\Framework\v2.0.50727 ...
-
【Microsoft Azure 的1024种玩法】六、使用Azure Cloud Shell对Linux VirtualMachines 进行生命周期管理
[文章简介] Azure Cloud Shell 是一个用于管理 Azure 资源的.可通过浏览器访问的交互式经验证 shell. 它使用户能够灵活选择最适合自己工作方式的 shell 体验,本篇文章 ...
随机推荐
-
RavenDB官网文档翻译系列第二
索引>查询>处理文档关联 处理文档关联 RavenDB坚持的一个设计原则就是文档是独立的,这就是说处理一个文档所需的所有数据都存储在文档本身之中.然而,这不是说对象之间不应存在联系. 在许 ...
-
关于android的一些基础知识
怕自己以后忘了,所以在这里先写写! equal和==的区别是,一个用于判断字符串,一个用于判断int是否相等 equal比较的是对象,==比较的是值
-
Excel大数据量分段导入到Oracle
客户需要将一个具有2W多条数据的Excel表格中的数据导入到Oracle数据库的A表中,开始采用的是利用Oledb直接将数据读入到DataTable中,然后通过拼接InserInto语句来插入到数据库 ...
-
从github上面拷贝源码
http://www.cnblogs.com/xing901022/p/4287064.html
-
Leetcode#172 Fractorial Trailing Zero
原题地址 n!含有多少个因子10,则结尾有多少个0 10=2*5,而2的个数肯定比5多,所以n!含有多少个因子5,则结尾有多少个0 如何计算n!有多少个因子5呢? 比如n=13,则: n! = 13 ...
-
(step4.2.5)hdu 1495(非常可乐——BFS)
题目大意:输入三个整数 a,b,c. a : 可乐瓶的容量,b: 甲杯的容量 ,c: 乙杯的容量.问能否用这三个被来实现饮料的平分???如果可以输出倒饮料的次数, 否则输出NO 解题思路:BFS ...
-
android获取手机信息2
IMEI号,IESI号,手机型号: private void getInfo() { TelephonyManager mTm = (TelephonyManager) getSystemServic ...
-
论文笔记--PCN:Real-Time Rotation-Invariant Face Detection with Progressive Calibration Networks
关键词:rotation-invariant face detection, rotation-in-plane, coarse-to-fine 核心概括:该篇文章为中科院计算所智能信息处理重点实验室 ...
-
springboot+mybatis+dubbo+aop日志终结篇
之前的几篇文章把dubbo服务层都介绍完毕,本篇文章咱们主要写web层如何调用服务层的方法.文章底部附带源码. 启动服务 服务启动时,会向zk注册自己提供的服务,zk则会记录服务提供者的IP地址以及暴 ...
-
python3 元类编程的一个例子
[引子] 虽然我们可以通过“class”语句来定义“类”,但是要想更加细粒度的控制“类”的创建,要使用元类编程才能实现. 比如说我们要实现这样的一个约束.所有项目中用到的类都应该要为它定义的方法提供文 ...