如果将关系用一个数字来表示(相等表示不确定),那么题目相当于要计算
$1324-1243-1432$
=$(1323-1423)-(1233-1234)-(1322-1423)$
=$1323+1234-(1322+1233)$
=$1323+1234-1222-(1324+1342)$
先预处理出li表示i左边比i小的数,ri表示i右边比i大的数(线段树即可),然后对于一下每一项分别考虑如何统计:
1.1323,枚举1的位置i,右边有ri种,左边容斥,答案为任意-312-112=$li*(i-1)-li*(li-1)/2-\sum_{j=1}^{i-1}[aj<ai]*j$
2.1234,枚举3的位置i,右边有ri种,左边有$\sum_{j=1}^{i-1}[aj<ai]*lj$种
3.1222,枚举1的位置i,右边有$C_{ri}^{3}$种
4.1324+1342,枚举3的位置i,将整个拆分成4和12,4有ri种,再对1和3的位置关系容斥,即任意-312-321=$\sum_{j=i+1}^{n}[aj<ai]*(aj-1)-c(n-i-ri,2)$
1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 200005
4 #define mod 16777216
5 #define L (k<<1)
6 #define R (L+1)
7 #define mid (l+r>>1)
8 int n,ans,a[N],l[N],r[N],f[N<<2];
9 int c2(int k){
10 return 1LL*k*(k-1)/2%mod;
11 }
12 int c3(int k){
13 return 1LL*k*(k-1)*(k-2)/6%mod;
14 }
15 void update(int k,int l,int r,int x,int y){
16 if (l==r){
17 f[k]=(f[k]+y)%mod;
18 return;
19 }
20 if (x<=mid)update(L,l,mid,x,y);
21 else update(R,mid+1,r,x,y);
22 f[k]=(f[L]+f[R])%mod;
23 }
24 int query(int k,int l,int r,int x,int y){
25 if ((l>y)||(x>r))return 0;
26 if ((x<=l)&&(r<=y))return f[k];
27 return (query(L,l,mid,x,y)+query(R,mid+1,r,x,y))%mod;
28 }
29 int main(){
30 scanf("%d",&n);
31 for(int i=1;i<=n;i++)scanf("%d",&a[i]);
32 for(int i=1;i<=n;i++){
33 update(1,1,n,a[i],1);
34 l[i]=query(1,1,n,1,a[i]-1);
35 r[i]=n-i-(a[i]-l[i]-1);
36 ans=((ans+1LL*r[i]*(l[i]*(i-1LL)-c2(l[i]))-c3(r[i]))%mod+mod)%mod;
37 }
38 memset(f,0,sizeof(f));
39 for(int i=1;i<=n;i++){
40 update(1,1,n,a[i],l[i]-i);
41 ans=(ans+1LL*r[i]*query(1,1,n,1,a[i]-1))%mod;
42 }
43 memset(f,0,sizeof(f));
44 for(int i=n;i;i--){
45 update(1,1,n,a[i],a[i]-1);
46 ans=(ans+1LL*r[i]*(query(1,1,n,1,a[i]-1)-c2(n-i-r[i])+mod))%mod;
47 }
48 printf("%d",ans);
49 }
[bzoj1145]图腾的更多相关文章
-
bzoj1145[CTSC2008]图腾
传送门 虽然是远古时期的ctsc,但是果然还是ctsc啊 前置芝士:树状数组 这个题最开始的思路很好想,由于之前写过一个类似处理的题,所以这个题我一开始就想到了思路. 首先,我们可以尝试讲图腾表示为x ...
-
bzoj1145
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1145 神题...... 定义f(abcd)为高度排名为abcd的个数,例如闪电的个数为f(13 ...
-
HTML5之2D物理引擎 Box2D for javascript Games 系列 第三部分之创建图腾破坏者的关卡
创建图腾破坏者的关卡 现在你有能力创建你的第一个游戏原型,我们将从创建图腾破坏者的级别开始. 为了展示我们所做事情的真实性,我们将流行的Flash游戏图腾破坏者的一关作为 我们模仿的对象.请看下面的截 ...
-
洛谷 P1498 南蛮图腾
题目描述 自从到了南蛮之地,孔明不仅把孟获收拾的服服帖帖,而且还发现了不少少数民族的智慧,他发现少数民族的图腾往往有着一种分形的效果,在得到了酋长的传授后,孔明掌握了不少绘图技术,但唯独不会画他们的图 ...
-
CH4201 楼兰图腾
题意 4201 楼兰图腾 0x40「数据结构进阶」例题 描述 在完成了分配任务之后,西部314来到了楼兰古城的西部.相传很久以前这片土地上(比楼兰古城还早)生活着两个部落,一个部落崇拜尖刀('V'), ...
-
洛咕 P4528 [CTSC2008]图腾
洛咕 P4528 [CTSC2008]图腾 神题orz. 先约定abcd表示\(1\leq A<B<C<D\leq n\),而且\(y_a,y_b,y_c,y_d\)的排名正好是\( ...
-
P1498 南蛮图腾
P1498 南蛮图腾 题目描述 自从到了南蛮之地,孔明不仅把孟获收拾的服服帖帖,而且还发现了不少少数民族的智慧,他发现少数民族的图腾往往有着一种分形的效果(看Hint),在得到了酋长的传授后,孔明掌握 ...
-
TYVJ1432 楼兰图腾
Description 平面上有 N(N≤[10]^5 ) 个点,每个点的横.纵坐标的范围都是 1~N,任意两个点的横.纵坐标都不相同.若三个点 (x_1,y_1),(x_2,y_2),(x_3,y_ ...
-
洛谷——P1498 南蛮图腾
https://www.luogu.org/problem/show?pid=1498 题目描述 自从到了南蛮之地,孔明不仅把孟获收拾的服服帖帖,而且还发现了不少少数民族的智慧,他发现少数民族的图腾往 ...
随机推荐
-
【Java】JDBC连接数据库
JDBC介绍 JDBC(Java Data Base Connectivity,java数据库连接)是一种用于执行SQL语句的Java API,可以为多种关系数据库提供统一访问,它由一组用Java语言 ...
-
UML(统一建模语言)
最近看了一个UML图,所以特意来了解一下UML 统一建模语言 锁定 同义词 UML(统一建模语言)一般指统一建模语言 本词条由“科普中国”百科科学词条编写与应用工作项目 审核 . Unified Mo ...
-
20160328 javaweb Cookie 小练习
利用cookie实现历史记录浏览: 由于是简单演示,所以直接用javabean 取代数据库了 数据存储类: package com.dzq.dao; import java.util.*; impor ...
-
ArcGIS API for Silverlight开发入门
你用上3G手机了吗?你可能会说,我就是喜欢用nokia1100,ABCDEFG跟我 都没关系.但你不能否认3G是一种趋势,最终我们每个人都会被包裹在3G网络中.1100也不是一成不变,没准哪天为了打击 ...
-
C++中的字符串输入输出函数详解
常见的输入问题: 1.直接用cin输入(当然可以使用cout直接输出): 1)string s; cin >> s; //只接收回车键和空格前面所输入的字符!!!!! 一旦输入空格,cin ...
-
js 复制文本到粘贴板
//html 在iOS Safari中,剪贴板API有一些限制(实际上是安全措施): 于安全原因,iOS Safari只允许容器中的document.execCommand('copy')文本co ...
-
[例1.10]使用setw设置输出宽度的例子
[例1.10]使用setw设置输出宽度的例子: #include <iostream> #include <iomanip> using namespace std; void ...
-
soa文章摘抄
from: http://blog.vsharing.com/fengjicheng/MC19136/ 浅析深究什么是SOA? (入选推荐日志,加10币)浅析深究什么是SOA? 金蝶中间件有限公司总经 ...
-
windows批处理学习(字符换操作)---04
转自:https://www.cnblogs.com/DswCnblog/p/5432326.html 1.截取字符串 截取字符串可以说是字符串处理功能中最常用的一个子功能了,能够实现截取字符串中的特 ...
-
【NOI2016】优秀的拆分
题目描述 如果一个字符串可以被拆分为 $AABB$ 的形式,其中 $A$ 和 $B$ 是任意非空字符串,则我们称该字符串的这种拆分是优秀的. 例如,对于字符串 aabaabaa,如果令 $A = \m ...