Time Limit: 2000MS | Memory Limit: 10000K | |
Total Submissions: 13372 | Accepted: 4340 |
Description
Input
nr_of_vertices
vertex:(nr_of_successors) successor1 successor2 ... successorn
...
where vertices are represented as integers from 1 to n ( n <= 900 ). The tree description is followed by a list of pairs of vertices, in the form:
nr_of_pairs
(u v) (x y) ...
The input file contents several data sets (at least one).
Note that white-spaces (tabs, spaces and line breaks) can be used freely in the input.
Output
For example, for the following tree:
Sample Input
5
5:(3) 1 4 2
1:(0)
4:(0)
2:(1) 3
3:(0)
6
(1 5) (1 4) (4 2)
(2 3)
(1 3) (4 3)
Sample Output
2:1
5:5
Hint
/* ***********************************************
Author :kuangbin
Created Time :2013-9-5 9:11:48
File Name :F:\2013ACM练习\专题学习\LCA\POJ1470_2.cpp
************************************************ */ #include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
/*
* POJ 1470
* 给出一颗有向树,Q个查询
* 输出查询结果中每个点出现次数
*/
/*
* LCA离线算法,Tarjan
* 复杂度O(n+Q);
*/
const int MAXN = ;
const int MAXQ = ;//查询数的最大值 //并查集部分
int F[MAXN];//需要初始化为-1
int find(int x)
{
if(F[x] == -)return x;
return F[x] = find(F[x]);
}
void bing(int u,int v)
{
int t1 = find(u);
int t2 = find(v);
if(t1 != t2)
F[t1] = t2;
}
//************************
bool vis[MAXN];//访问标记
int ancestor[MAXN];//祖先
struct Edge
{
int to,next;
}edge[MAXN*];
int head[MAXN],tot;
void addedge(int u,int v)
{
edge[tot].to = v;
edge[tot].next = head[u];
head[u] = tot++;
} struct Query
{
int q,next;
int index;//查询编号
}query[MAXQ*];
int answer[MAXQ];//存储最后的查询结果,下标0~Q-1
int h[MAXQ];
int tt;
int Q; void add_query(int u,int v,int index)
{
query[tt].q = v;
query[tt].next = h[u];
query[tt].index = index;
h[u] = tt++;
query[tt].q = u;
query[tt].next = h[v];
query[tt].index = index;
h[v] = tt++;
} void init()
{
tot = ;
memset(head,-,sizeof(head));
tt = ;
memset(h,-,sizeof(h));
memset(vis,false,sizeof(vis));
memset(F,-,sizeof(F));
memset(ancestor,,sizeof(ancestor));
} void LCA(int u)
{
ancestor[u] = u;
vis[u] = true;
for(int i = head[u];i != -;i = edge[i].next)
{
int v = edge[i].to;
if(vis[v])continue;
LCA(v);
bing(u,v);
ancestor[find(u)] = u;
}
for(int i = h[u];i != -;i = query[i].next)
{
int v = query[i].q;
if(vis[v])
{
answer[query[i].index] = ancestor[find(v)];
}
}
} bool flag[MAXN];
int Count_num[MAXN];
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int n;
int u,v,k;
while(scanf("%d",&n) == )
{
init();
memset(flag,false,sizeof(flag));
for(int i = ;i <= n;i++)
{
scanf("%d:(%d)",&u,&k);
while(k--)
{
scanf("%d",&v);
flag[v] = true;
addedge(u,v);
addedge(v,u);
}
}
scanf("%d",&Q);
for(int i = ;i < Q;i++)
{
char ch;
cin>>ch;
scanf("%d %d)",&u,&v);
add_query(u,v,i);
}
int root;
for(int i = ;i <= n;i++)
if(!flag[i])
{
root = i;
break;
}
LCA(root);
memset(Count_num,,sizeof(Count_num));
for(int i = ;i < Q;i++)
Count_num[answer[i]]++;
for(int i = ;i <= n;i++)
if(Count_num[i] > )
printf("%d:%d\n",i,Count_num[i]);
}
return ;
}
POJ 1470 Closest Common Ancestors (LCA,离线Tarjan算法)的更多相关文章
-
POJ - 1470 Closest Common Ancestors(离线Tarjan算法)
1.输出测试用例中是最近公共祖先的节点,以及这个节点作为最近公共祖先的次数. 2.最近公共祖先,离线Tarjan算法 3. /* POJ 1470 给出一颗有向树,Q个查询 输出查询结果中每个点出现次 ...
-
POJ 1470 Closest Common Ancestors(LCA&;RMQ)
题意比较费劲:输入看起来很麻烦.处理括号冒号的时候是用%1s就可以.还有就是注意它有根节点...Q次查询 在线st算法 /*************************************** ...
-
POJ 1470 Closest Common Ancestors (模板题)(Tarjan离线)【LCA】
<题目链接> 题目大意:给你一棵树,然后进行q次询问,然后要你统计这q次询问中指定的两个节点最近公共祖先出现的次数. 解题分析:LCA模板题,下面用的是离线Tarjan来解决.并且为了代码 ...
-
poj 1470 Closest Common Ancestors LCA
题目链接:http://poj.org/problem?id=1470 Write a program that takes as input a rooted tree and a list of ...
-
POJ 1470 Closest Common Ancestors(LCA 最近公共祖先)
其实这是一个裸求LCA的题目,我使用的是离线的Tarjan算法,但是这个题的AC对于我来说却很坎坷……首先是RE,我立马想到数组开小了,然后扩大了数组,MLE了……接着把数组调整适当大小,又交了一发, ...
-
POJ 1470 Closest Common Ancestors LCA题解
本题也是找LCA的题目,只是要求多次查询.一般的暴力查询就必定超时了,故此必须使用更高级的方法,这里使用Tarjan算法. 本题处理Tarjan算法,似乎输入处理也挺麻烦的. 注意: 由于查询的数据会 ...
-
POJ 1470 Closest Common Ancestors(最近公共祖先 LCA)
POJ 1470 Closest Common Ancestors(最近公共祖先 LCA) Description Write a program that takes as input a root ...
-
POJ 1470 Closest Common Ancestors 【LCA】
任意门:http://poj.org/problem?id=1470 Closest Common Ancestors Time Limit: 2000MS Memory Limit: 10000 ...
-
POJ 1470 Closest Common Ancestors (LCA, dfs+ST在线算法)
Closest Common Ancestors Time Limit: 2000MS Memory Limit: 10000K Total Submissions: 13370 Accept ...
随机推荐
-
深入理解DOM节点类型第六篇——特性节点Attribute
× 目录 [1]特征 [2]属性 [3]方法 前面的话 元素的特性在DOM中以Attr类型表示,从技术角度讲,特性是存在于元素的attributes属性中的节点.尽管特性是节点,但却不是DOM节点树的 ...
-
[python实现设计模式]-2.模板方法模式---把大象关进冰箱.
平时大家上班都很累,为了增加工作中的欢乐气氛,黄页组准备搞个游戏. 游戏的名字是把大象关进冰箱.游戏很简单,需要把指定的物品放进冰箱. 我们都知道,把大象放进冰箱,分3步. 第一步,打开冰箱门,第二步 ...
-
黑马程序员+ADO.Net基础(上)
---------------<a href="http://edu.csdn.net"target="blank">ASP.Net+Android ...
-
SQL Server 性能优化之——T-SQL NOT IN 和 NOT Exists
这次介绍一下T-SQL中“Not IN” 和“Not Exists”的优化. Not IN 和 Not Exists 命令 : 有些情况下,需要select/update/delete 操作孤立数据. ...
-
linux下使用 Tomcat 的几个坑
总结:用sudo su - 后的身份启动tomcat,可选用 bin下的 ./catalina.sh run命令以显示启动过程中可能的报错信息 1.普通用户是无法使用0~1023的熟知端口的,需要 ...
-
在安卓下使用python连接蓝牙串口模块(HC-06)
在安卓上安装Python: 请参考:https://github.com/kuri65536/python-for-android/blob/master/README.md下载程序文件需要访问 ht ...
-
作为一个懒虫,如何优雅的使用windows
懒虫windows系列(一) 首先是快捷键,因为自己太懒了,觉得用鼠标很麻烦,下面总结一下自己最常用的快捷键(windows10 ) Ctrl+Shift+N:新建文件夹 F2:重命名 Ctrl + ...
-
【Selenium】【BugList11】启动selenium server报错:Unsupported major.minor version 52.0
[环境信息] python:3.6.5 平台:win7 selenium:3.11.0 selenium server:selenium-server-standalone-3.11.0.jar jd ...
-
从零开始学 Web 之 JavaScript(三)函数
大家好,这里是「 Daotin的梦呓 」从零开始学 Web 系列教程.此文首发于「 Daotin的梦呓 」公众号,欢迎大家订阅关注.在这里我会从 Web 前端零基础开始,一步步学习 Web 相关的知识 ...
-
Tomcat部署及优化
一.Tomcat安装部署 一.安装jdk和Tomcat 1.上传jdk和Tomcat mkdir -p /opt/tools/ /application ##jdk:jdk-8u131 tomcat: ...