效果
1 实现代码
读取txt文件:
def readText(text_file_path): with open(text_file_path, encoding="gbk") as f: # content = f.read() return content
得到文章的词频:
def getRecommondArticleKeyword(text_content, key_word_need_num = 10, custom_words = [], stop_words =[], query_pattern = "searchEngine"): """ :param text_content: 文本字符串 :param key_word_need_num: 需要的关键词数量 :param custom_words: 自定义关键词 :param stop_words: 不查询关键词 :param query_pattern: precision:精确模式――――试图将句子最精确地切开,适合文本分析; entire:全模式――――把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义; searchEngine:搜索引擎模式――――在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词; paddle模式――――利用PaddlePaddle深度学习框架,训练序列标注(双向GRU)网络模型实现分词。同时支持词性标注。 :return: """ # jieba.enable_paddle() # paddle.fluid.install_check.run_check() if not isinstance(text_content, str): raise ValueError("文本字符串类型错误!") if not isinstance(key_word_need_num, int): raise ValueError("关键词个数类型错误!") if not isinstance(custom_words, list): raise ValueError("自定义关键词类型错误!") if not isinstance(stop_words, list): raise ValueError("屏蔽关键词类型错误!") if not isinstance(query_pattern, str): raise ValueError("查询模式类型错误!") # 添加自定义关键词 for word in custom_words: jieba.add_word(word) if query_pattern == "searchEngine": key_words = jieba.cut_for_search(text_content) elif query_pattern == "entire": key_words = jieba.cut(text_content, cut_all=True, use_paddle=True) elif query_pattern == "precision": key_words = jieba.cut(text_content, cut_all=False, use_paddle=True) else: return [] # print("拆分后的词: %s" % " ".join(key_words)) # 过滤后的关键词 stop_words = set(stop_words) word_count = Counter() for word in key_words: if len(word) > 1 and word not in stop_words: word_count[word] += 1 # res_words = list() # for data in word_count.most_common(key_word_need_num): # res_words.append(data[0]) # return res_words return word_count
绘制图片:
def drawWordsCloud(word_count, save_img_filePath="", img_mask_filePath=""): # print(word_count) # print(type(word_count)) if len(img_mask_filePath) != 0: img_mask = np.array(Image.open(img_mask_filePath)) #打开遮罩图片,将图片转换为数组 wc = wordcloud.WordCloud(font_path="/Library/Fonts/Arial Unicode.ttf",# 设置中文字体,词云默认字体是“DroidSansMono.ttf字体库”,不支持中文 background_color="white", # 设置背景颜色 max_words=200, # 设置最大显示的字数 max_font_size=50, # 设置字体最大值 random_state=30, # 设置有多少种随机生成状态,即有多少种配色方案 width=400, height=200, mask=img_mask ) else: wc = wordcloud.WordCloud(font_path="/Library/Fonts/Arial Unicode.ttf",# 设置中文字体,词云默认字体是“DroidSansMono.ttf字体库”,不支持中文 background_color="white", # 设置背景颜色 max_words=200, # 设置最大显示的字数 max_font_size=50, # 设置字体最大值 random_state=30, # 设置有多少种随机生成状态,即有多少种配色方案 width=400, height=200 ) # 绘图 wc.generate_from_frequencies(word_count) #从字典生成词云 plt.imshow(wc) #显示词云 plt.axis("off") #关闭坐标轴 plt.show() #显示图像 # 保存图片 if len(save_img_filePath) != 0: wc.to_file(save_img_filePath) else: pass
2 完整代码
#-*- coding : utf-8-*- import jieba from collections import Counter import paddle import wordcloud #词云展示库 import matplotlib.pyplot as plt #图像展示库 import time from PIL import Image import numpy as np def timer(func): def calculateTime(*args, **kwargs): t = time.perf_counter() result = func(*args, **kwargs) print(f"func {func.__name__} coast time:{time.perf_counter() - t:.8f} s") return result return calculateTime def readText(text_file_path): with open(text_file_path, encoding="gbk") as f: # content = f.read() return content @timer def getRecommondArticleKeyword(text_content, key_word_need_num = 10, custom_words = [], stop_words =[], query_pattern = "searchEngine"): """ :param text_content: 文本字符串 :param key_word_need_num: 需要的关键词数量 :param custom_words: 自定义关键词 :param stop_words: 不查询关键词 :param query_pattern: precision:精确模式――――试图将句子最精确地切开,适合文本分析; entire:全模式――――把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义; searchEngine:搜索引擎模式――――在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词; paddle模式――――利用PaddlePaddle深度学习框架,训练序列标注(双向GRU)网络模型实现分词。同时支持词性标注。 :return: """ # jieba.enable_paddle() # paddle.fluid.install_check.run_check() if not isinstance(text_content, str): raise ValueError("文本字符串类型错误!") if not isinstance(key_word_need_num, int): raise ValueError("关键词个数类型错误!") if not isinstance(custom_words, list): raise ValueError("自定义关键词类型错误!") if not isinstance(stop_words, list): raise ValueError("屏蔽关键词类型错误!") if not isinstance(query_pattern, str): raise ValueError("查询模式类型错误!") # 添加自定义关键词 for word in custom_words: jieba.add_word(word) if query_pattern == "searchEngine": key_words = jieba.cut_for_search(text_content) elif query_pattern == "entire": key_words = jieba.cut(text_content, cut_all=True, use_paddle=True) elif query_pattern == "precision": key_words = jieba.cut(text_content, cut_all=False, use_paddle=True) else: return [] # print("拆分后的词: %s" % " ".join(key_words)) # 过滤后的关键词 stop_words = set(stop_words) word_count = Counter() for word in key_words: if len(word) > 1 and word not in stop_words: word_count[word] += 1 # res_words = list() # for data in word_count.most_common(key_word_need_num): # res_words.append(data[0]) # return res_words return word_count def drawWordsCloud(word_count, save_img_filePath="", img_mask_filePath=""): # print(word_count) # print(type(word_count)) if len(img_mask_filePath) != 0: img_mask = np.array(Image.open(img_mask_filePath)) #打开遮罩图片,将图片转换为数组 wc = wordcloud.WordCloud(font_path="/Library/Fonts/Arial Unicode.ttf",# 设置中文字体,词云默认字体是“DroidSansMono.ttf字体库”,不支持中文 background_color="white", # 设置背景颜色 max_words=200, # 设置最大显示的字数 max_font_size=50, # 设置字体最大值 random_state=30, # 设置有多少种随机生成状态,即有多少种配色方案 width=400, height=200, mask=img_mask ) else: wc = wordcloud.WordCloud(font_path="/Library/Fonts/Arial Unicode.ttf",# 设置中文字体,词云默认字体是“DroidSansMono.ttf字体库”,不支持中文 background_color="white", # 设置背景颜色 max_words=200, # 设置最大显示的字数 max_font_size=50, # 设置字体最大值 random_state=30, # 设置有多少种随机生成状态,即有多少种配色方案 width=400, height=200 ) # 绘图 wc.generate_from_frequencies(word_count) #从字典生成词云 plt.imshow(wc) #显示词云 plt.axis("off") #关闭坐标轴 plt.show() #显示图像 # 保存图片 if len(save_img_filePath) != 0: wc.to_file(save_img_filePath) else: pass if __name__ == "__main__": pass # /Users/mac/Downloads/work/retailSoftware/公司项目/test.txt text_file_path = "/Users/mac/Downloads/电子书/编程思想/相约星期二/相约星期二.txt" # text_file_path = "/Users/mac/Downloads/work/retailSoftware/公司项目/test3.txt" text_content = readText(text_file_path) # print(text_content) # print(JNI_API_getRecommondArticleKeyword(text_content)) img_mask_filePath = "/Users/mac/Desktop/截屏2021-08-20 下午4.02.10.png" img_save_filePath = "/Users/mac/Downloads/test9.png" drawWordsCloud(getRecommondArticleKeyword(text_content), img_save_filePath, img_mask_filePath)
到此这篇关于Python统计词频并绘制图片(附完整代码)的文章就介绍到这了,更多相关Python统计词频绘制图片内容请搜索服务器之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持服务器之家!
原文链接:https://blog.csdn.net/qq_33375598/article/details/119856008