“备忘”的定义
“memoization”(备忘)这个词是由Donald Michie在1968年提出的,它基于拉丁语单词“memorandum”(备忘录),意思是“被记住”。虽然它和单词“memorization”在某种程度上有些相似,但它并不是该单词的错误拼写。实际上,Memoisation是一种用于通过计算来加速程序的技术,它通过记住输入量的计算结果,例如函数调用结果,来实现其加速目的。如果遇到相同的输入或者具有相同参数的函数调用,那么之前存储的结果就可以被再次使用,从而避免一些不必要的计算。在很多情况下,可以使用一个简单的数组来存储结果,但也可以使用许多其他的数据结构,例如关联数组,它在Perl语言中叫做哈希,在Python语言中称为字典。
备忘功能可以由程序员显式地编程实现,但是一些编程语言如Python,都提供了自动备忘函数的机制。
利用函数装饰器实现备忘功能
在前面关于递归函数的那章中,我们分别使用迭代和递归实现了斐波纳契数列的求解。我们已经证明,如果直接利用斐波纳契数列的数学定义,在一个递归函数中实现数列的求解,正如下面的函数一样,那么它将具有指数级的时间复杂度:
1
2
3
4
5
6
7
|
def fib(n):
if n = = 0 :
return 0
elif n = = 1 :
return 1
else :
return fib(n - 1 ) + fib(n - 2 )
|
此外,我们还提出了一种提高递归实现的时间复杂度的方法,即通过添加一个字典来记住之前函数的计算结果。这是一个显式地使用备忘技术的例子,只是当时我们并没有这么称呼它。这种方法的缺点是,原始递归实现的明晰性和优雅性丢失了。
造成以上缺点的原因是,我们改变了递归函数fib的代码。不过下面的代码不会改变我们的fib函数,所以它的明晰性和易读性并没有丢失。为了实现该目的,我们使用自定义的函数memoize()。函数memoize()以函数作为参数,并使用一个字典“memo”来存储函数的结果。虽然变量“memo”和函数“f”仅仅具有局部备忘功能,但是它们通过函数“helper”被一个闭包捕获,而memoize()将函数“helper”作为引用返回。所以,对memoize(fib)的调用将会返回一个helper()的引用,而在helper()中实现了fib()函数的功能以及一个用于保存还未存储的结果到字典“memo”中的包装器,并防止重新计算“memo”中已有的结果。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
|
def memoize(f):
memo = {}
def helper(x):
if x not in memo:
memo[x] = f(x)
return memo[x]
return helper
def fib(n):
if n = = 0 :
return 0
elif n = = 1 :
return 1
else :
return fib(n - 1 ) + fib(n - 2 )
fib = memoize(fib)
print (fib( 40 ))
|
现在让我们了解下所谓的装饰器,首先看一下上面代码中将备忘功能指派到fib函数的这一行:
1
|
fib = memoize(fib)
|
一种说法是,函数memoize()装饰了函数fib。
将Memoize封装成类
我们还可以将结果的缓存封装到一个类中,如下面的例子所示:
1
2
3
4
5
6
7
8
|
class Memoize:
def __init__( self , fn):
self .fn = fn
self .memo = {}
def __call__( self , * args):
if args not in self .memo:
self .memo[args] = self .fn( * args)
return self .memo[args]
|
因为我们使用了字典,所以不能使用可变参数,即参数必须是不可变的。
Python中的装饰器
Python中的装饰器是一个可调用的Python对象,用于修改一个函数、方法或者类的定义。原始的对象,也就是即将被改变的那个对象,作为参数传递给一个装饰器,而装饰器则返回一个修改过的对象,例如一个修改过的函数,它会被绑定到定义中使用的名字上。Python中的装饰器与Java中的注解有一个相似的语法,即Python中的装饰器语法可以看作是纯粹的语法糖,使用“@”作为关键字。
示例:使用装饰器实现备忘功能
其实,前面我们已经使用了装饰器,只是没有这么称呼它而已。实际上,本章开头例子中的memoize函数就是一个装饰器,我们使用它来记住fib函数的结果,只是我们没有使用Python中装饰器特殊的语法而已,即艾特字符“@”。
相比于写成下面的形式
1
|
fib = memoize(fib)
|
我们可以这样写
1
|
@memoize
|
但这一行必须直接写在被装饰的函数之前,在我们的例子fib()中,如下所示:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
def memoize(f):
memo = {}
def helper(x):
if x not in memo:
memo[x] = f(x)
return memo[x]
return helper
@memoize
def fib(n):
if n = = 0 :
return 0
elif n = = 1 :
return 1
else :
return fib(n - 1 ) + fib(n - 2 )
#fib = memoize(fib)
print (fib( 40 ))
|
利用装饰器检查参数
在讲解递归函数的那章中我们介绍了阶乘函数,在那里我们希望保持函数尽可能简单,而不想掩盖基本理念,所以代码中没有包含任何参数检查代码。然而,如果别人以负数或者浮点数作为参数来调用我们的函数,那么函数将会陷入一个死循环。
下面的程序使用一个装饰器函数来确保传给函数“factorial”的参数是一个正整数:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
|
def argument_test_natural_number(f):
def helper(x):
if type (x) = = int and x > 0 :
return f(x)
else :
raise Exception( "Argument is not an integer" )
return helper
@argument_test_natural_number
def factorial(n):
if n = = 1 :
return 1
else :
return n * factorial(n - 1 )
for i in range ( 1 , 10 ):
print (i, factorial(i))
print (factorial( - 1 ))
|
练习
1、我们的练习是一个古老的谜题。1612年,法国耶稣会士Claude-Gaspar Bachet提出了该谜题,即使用一个天平称出从1磅到40磅的所有整数重量的东西(例如,糖或者面粉),求最少的砝码数量。
第一个方法可能是使用1、2、4、8、16和32磅重量的这些砝码。如果我们将砝码放在天平的一端,而将物品放在另一端,那么这种方法用到的砝码数量将是最小的。然而,我们也可以将砝码同时放在天平的两端,此时我们仅仅需要重量为1、3、9、27的砝码。
编写一个Python函数weigh(),该函数计算需要的砝码以及它们在天平盘中的分布,以此来称量1磅到40磅中任何一个整数重量的物品。
解决方法
1、我们需要前面章节“Linear Combinations”中的函数linear_combination()。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
|
def factors_set():
factors_set = ( (i,j,k,l) for i in [ - 1 , 0 , 1 ]
for j in [ - 1 , 0 , 1 ]
for k in [ - 1 , 0 , 1 ]
for l in [ - 1 , 0 , 1 ])
for factor in factors_set:
yield factor
def memoize(f):
results = {}
def helper(n):
if n not in results:
results[n] = f(n)
return results[n]
return helper
@memoize
def linear_combination(n):
""" returns the tuple (i,j,k,l) satisfying
n = i*1 + j*3 + k*9 + l*27 """
weighs = ( 1 , 3 , 9 , 27 )
for factors in factors_set():
sum = 0
for i in range ( len (factors)):
sum + = factors[i] * weighs[i]
if sum = = n:
return factors
|
2、利用上面的代码,就能很容易写出我们的函数weigh()。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
def weigh(pounds):
weights = ( 1 , 3 , 9 , 27 )
scalars = linear_combination(pounds)
left = ""
right = ""
for i in range ( len (scalars)):
if scalars[i] = = - 1 :
left + = str (weights[i]) + " "
elif scalars[i] = = 1 :
right + = str (weights[i]) + " "
return (left,right)
for i in [ 2 , 3 , 4 , 7 , 8 , 9 , 20 , 40 ]:
pans = weigh(i)
print ( "Left pan: " + str (i) + " plus " + pans[ 0 ])
print ( "Right pan: " + pans[ 1 ] + "n" )
|