本文实例讲述了python计算牛顿迭代多项式的方法。分享给大家供大家参考。具体实现方法如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
''' p = evalPoly(a,xData,x).
Evaluates Newton's polynomial p at x. The coefficient
vector 'a' can be computed by the function 'coeffts'.
a = coeffts(xData,yData).
Computes the coefficients of Newton's polynomial.
'''
def evalPoly(a,xData,x):
n = len (xData) - 1 # Degree of polynomial
p = a[n]
for k in range ( 1 ,n + 1 ):
p = a[n - k] + (x - xData[n - k]) * p
return p
def coeffts(xData,yData):
m = len (xData) # Number of data points
a = yData.copy()
for k in range ( 1 ,m):
a[k:m] = (a[k:m] - a[k - 1 ]) / (xData[k:m] - xData[k - 1 ])
return a
|
希望本文所述对大家的Python程序设计有所帮助。