[BZOJ 1079][SCOI 2008]着色方案

时间:2022-08-28 20:31:28

1079: [SCOI2008]着色方案

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 2237  Solved: 1361
[Submit][Status][Discuss]

Description

  有n个木块排成一行,从左到右依次编号为1~n。你有k种颜色的油漆,其中第i种颜色的油漆足够涂ci个木块。
所有油漆刚好足够涂满所有木块,即c1+c2+...+ck=n。相邻两个木块涂相同色显得很难看,所以你希望统计任意两
个相邻木块颜色不同的着色方案。

Input

  第一行为一个正整数k,第二行包含k个整数c1, c2, ... , ck。

Output

  输出一个整数,即方案总数模1,000,000,007的结果。

Sample Input

3
1 2 3

Sample Output

10

HINT

100%的数据满足:1 <= k <= 15, 1 <= ci <= 5

题解

令人恶心的一道 $DP$ ...

注意到 $k$ 的范围很小, 所以首先我们可以想到的定义状态的方案是把每种油漆剩余的数量定义进状态, 但是 $15$ 维的记忆化数组怕是是个人都不想写吧...而且$5^{15}\approx 3.05\times 10^{10}$ 并不能开得下...

但是我们会发现, 其实不同的油漆只要余量相等, 对于答案的影响并没有什么区别, 所以我们可以分别将余量为 $1,2,3,4,5$ 的油漆种数定义进状态, 再加一维表示上次用的是哪种油漆, $DFS$ 处理就好了

代码挺好写, 但看起来比较恶心...

参考代码

GitHub

 #include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm> const int MOD=1e9+;
const int MAXN=; int n;
int data[MAXN];
int dp[MAXN][MAXN][MAXN][MAXN][MAXN][]; int DFS(int,int,int,int,int,int); int main(){
scanf("%d",&n);
int tmp;
for(int i=;i<n;i++){
scanf("%d",&tmp);
data[tmp]++;
}
for(int i=;i<=;i++){
dp[][][][][][i]=;
}
printf("%d\n",DFS(data[],data[],data[],data[],data[],));
return ;
} int DFS(int r1,int r2,int r3,int r4,int r5,int last){
if(dp[r1][r2][r3][r4][r5][last]!=)
return dp[r1][r2][r3][r4][r5][last];
else{
long long tmp=;
if(r1>)
tmp+=1ll*(last==?r1-:r1)*DFS(r1-,r2,r3,r4,r5,);
if(r2>)
tmp+=1ll*(last==?r2-:r2)*DFS(r1+,r2-,r3,r4,r5,);
if(r3>)
tmp+=1ll*(last==?r3-:r3)*DFS(r1,r2+,r3-,r4,r5,);
if(r4>)
tmp+=1ll*(last==?r4-:r4)*DFS(r1,r2,r3+,r4-,r5,);
if(r5>)
tmp+=1ll*r5*DFS(r1,r2,r3,r4+,r5-,);
dp[r1][r2][r3][r4][r5][last]=tmp%MOD;
return dp[r1][r2][r3][r4][r5][last];
}
}

Backup

[BZOJ 1079][SCOI 2008]着色方案

[BZOJ 1079][SCOI 2008]着色方案的更多相关文章

  1. 【BZOJ 1079】&lbrack;SCOI2008&rsqb;着色方案

    Description 有n个木块排成一行,从左到右依次编号为1~n.你有k种颜色的油漆,其中第i种颜色的油漆足够涂ci个木块.所有油漆刚好足够涂满所有木块,即c1+c2+...+ck=n.相邻两个木 ...

  2. &lbrack; SCOI 2008 &rsqb; 着色方案

    \(\\\) \(Description\) 给出\(K\)种颜料各自的个数\(C_i\),每一个颜料只够涂一个格子,求将颜料用完,涂一排格子,每个格子只能涂一次的条件下,相邻两个格子的颜色互不相同的 ...

  3. BZOJ 1079&colon; &lbrack;SCOI2008&rsqb;着色方案 记忆化搜索

    1079: [SCOI2008]着色方案 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/p ...

  4. bzoj 1079&colon; &lbrack;SCOI2008&rsqb;着色方案 DP

    1079: [SCOI2008]着色方案 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 803  Solved: 512[Submit][Status ...

  5. BZOJ 1079&colon; &lbrack;SCOI2008&rsqb;着色方案(巧妙的dp)

    BZOJ 1079: [SCOI2008]着色方案(巧妙的dp) 题意:有\(n\)个木块排成一行,从左到右依次编号为\(1\)~\(n\).你有\(k\)种颜色的油漆,其中第\(i\)种颜色的油漆足 ...

  6. 【BZOJ】1079&colon; &lbrack;SCOI2008&rsqb;着色方案(dp&plus;特殊的技巧)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1079 只能想到5^15的做法...........................果然我太弱. 其实 ...

  7. Bzoj 1079 着色方案 题解

    1079: [SCOI2008]着色方案 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2237  Solved: 1361[Submit][Stat ...

  8. bzoj 1079 着色方案

    题目: 有n个木块排成一行,从左到右依次编号为1~n.你有k种颜色的油漆,其 中第i 种颜色的油漆足够涂ci 个木块.所有油漆刚好足够涂满所有木块,即c1+c2+-+ck=n.相邻两个木块涂相同色显得 ...

  9. &lbrack;BZOJ&rsqb;1079 着色方案&lpar;SCOI2008&rpar;

    相邻色块不同的着色方案,似乎这道题已经见过3个版本了. Description 有n个木块排成一行,从左到右依次编号为1~n.你有k种颜色的油漆,其中第i种颜色的油漆足够涂ci个木块.所有油漆刚好足够 ...

随机推荐

  1. 计算照片的面积(UWP篇)

    今天先说UWP应用程序上计算照片面积的方法,改天有空,再说说WPF篇. 其实计算照片面积的原理真TMD简单,只要你有本事读到照片的像素高度和宽度,以及水平/垂直方向上的分辨率(DPI)就可以了.计算方 ...

  2. &lbrack;转&rsqb;C&sol;C&plus;&plus; 实现文件透明加解密

    今日遇见一个开超市的朋友,真没想到在高校开超市一个月可以达到月净利润50K,相比起我们程序员的工资,真是不可同日而语,这个世道啊,真是做程序员不如经商开超市, 我们高科技的从业者,真是造原子弹不如卖茶 ...

  3. BZOJ1015 &lbrack;JSOI2008&rsqb;星球大战starwar

    Description 很久以前,在一个遥远的星系,一个黑暗的帝国靠着它的超级武器统治者整个星系.某一天,凭着一个偶然的 机遇,一支反抗军摧毁了帝国的超级武器,并攻下了星系中几乎所有的星球.这些星球通 ...

  4. 在eclipse中配置一个简单的spring入门项目

    spring是一个很优秀的基于Java的轻量级开源框架,为了解决企业级应用的复杂性而创建的,spring不仅可用于服务器端开发,从简单性.可测试性和松耦合性的角度,任何java应用程序都可以利用这个思 ...

  5. Jquery &plus; echarts 使用

    常规用法,就不细说了,按照官网一步步来. 本文主要解决问题(已参考网上其他文章): 1.把echarts给扩展到JQuery上,做到更方便调用. 2.多图共存 3.常见的X轴格式化,钻取时传业务实体I ...

  6. HDU4821---字符串hash,map判重

    这是2013年长春区域赛的铜牌题...然而第一次做的时候一直觉得会超时的..最后才知道并没有想象中的那么恐怖: 这题有两个注意的地方: (1)h[i] = h[i-1] * seed + s[i] - ...

  7. SQL Server 2008新特性——更改跟踪

    在大型的数据库应用中,经常会遇到部分数据的脱机和多个数据库的合并问题.比如现在有一个全省范围使用的应用程序,每个市都部署了单独的相同的应用程序服务器和数据库服务器,每个月需要将全省所有市的数据全部汇总 ...

  8. Spring Boot&lpar;二&rpar;:Spring-Data-JPA操作数据库( Hibernate)增删改查

    一.Maven使用3.3.9版本或以上,选择Binary 版本 二.添加spring-data-jpa和数据库依赖,以oracle为例 三.添加连接数据库配置 四.新建model自动生成数据库表(不用 ...

  9. 什么是Asp&period;net Core?和 &period;net core有什么区别?

    为什么要写这篇文章 写这篇文章有两个原因,第一个是因为新站点创建出来后一直空置着,所以写一篇文章放在这里.第二就是因为近来在做一些基于Asp.net core平台的项目开发,也遇到了一些问题,正好趁此 ...

  10. 在VM克隆CENTOS以后,网卡的处理过程

    会发现克隆CENTOS以后,网卡eth0无法启动.处理步骤如下:1. vi /etc/sysconfig/network-scripts/ifcfg-eth0删除HWADDR地址那行删除UUID的那行 ...