ES即简单又复杂,你可以快速的实现全文检索,又需要了解复杂的REST API。本篇就通过一些简单的搜索命令,帮助你理解ES的相关应用。虽然不能让你理解ES的原理设计,但是可以帮助你理解ES,探寻更多的特性。
搜索API
ES提供了两种搜索的方式:请求参数方式 和 请求体方式。
- 请求参数方式
curl 'localhost:9200/bank/_search?q=*&pretty'
其中bank是查询的索引名称,q后面跟着搜索的条件:q=*表示查询所有的内容
- 请求体方式(推荐这种方式)
curl -XPOST 'localhost:9200/bank/_search?pretty' -d ' { "query": { "match_all": {} } }'
这种方式会把查询的内容放入body中,会造成一定的开销,但是易于理解。在平时的练习中,推荐这种方式。
返回的内容:
{ "took" : 26, "timed_out" : false, "_shards" : { "total" : 5, "successful" : 5, "failed" : 0 }, "hits" : { "total" : 1000, "max_score" : 1.0, "hits" : [ { "_index" : "bank", "_type" : "account", "_id" : "1", "_score" : 1.0, "_source" : a }, { "_index" : "bank", "_type" : "account", "_id" : "6", "_score" : 1.0, "_source" : b }] } }
返回的内容大致可以如下讲解:
- took:是查询花费的时间,毫秒单位
- time_out:标识查询是否超时
- _shards:描述了查询分片的信息,查询了多少个分片、成功的分片数量、失败的分片数量等
- hits:搜索的结果,total是全部的满足的文档数目,hits是返回的实际数目(默认是10)
- _score是文档的分数信息,与排名相关度有关,参考各大搜索引擎的搜索结果,就容易理解。
由于ES是一次性返回所有的数据,因此理解返回的内容是很必要的。它不像传统的SQL是先返回数据的一个子集,再通过数据库端的游标不断的返回数据(由于对传统的数据库理解的不深,这里有错还望指正)。
查询语言DSL
ES支持一种JSON格式的查询,叫做DSL,domain specific language。这门语言刚开始比较难理解,因此通过几个简单的例子开始:
下面的命令,可以搜索全部的文档:
{ "query": { "match_all": {} } }
query定义了查询,match_all声明了查询的类型。还有其他的参数可以控制返回的结果:
curl -XPOST 'localhost:9200/bank/_search?pretty' -d ' { "query": { "match_all": {} }, "size": 1 }'
上面的命令返回了所有文档数据中的第一条文档。如果size不指定,那么默认返回10条。
下面的命令请求了第10-20的文档。
curl -XPOST 'localhost:9200/bank/_search?pretty' -d ' { "query": { "match_all": {} }, "from": 10, "size": 10 }'
下面的命令指定了文档返回的排序方式:
curl -XPOST 'localhost:9200/bank/_search?pretty' -d ' { "query": { "match_all": {} }, "sort": { "balance": { "order": "desc" } } }'
执行搜索
上面了解了基本的搜索语句,下面就开始深入一些常用的DSL了。
之前的返回数据都是返回文档的所有内容,这种对于网络的开销肯定是有影响的,下面的例子就指定了返回特定的字段:
curl -XPOST 'localhost:9200/bank/_search?pretty' -d ' { "query": { "match_all": {} }, "_source": ["account_number", "balance"] }'
再回到query,之前的查询都是查询所有的文档,并不能称之为搜索引擎。下面就通过match方式查询特定字段的特定内容,比如查询余额为20的账户信息:
curl -XPOST 'localhost:9200/bank/_search?pretty' -d ' { "query": { "match": { "account_number": 20 } } }'
查询地址为mill的信息:
curl -XPOST 'localhost:9200/bank/_search?pretty' -d ' { "query": { "match": { "address": "mill" } } }'
查询地址为mill或者lane的信息:
curl -XPOST 'localhost:9200/bank/_search?pretty' -d ' { "query": { "match": { "address": "mill lane" } } }'
如果我们想要返回同时包含mill和lane的,可以通过match_phrase查询:
curl -XPOST 'localhost:9200/bank/_search?pretty' -d ' { "query": { "match_phrase": { "address": "mill lane" } } }'
ES提供了bool查询,可以把很多小的查询组成一个更为复杂的查询,比如查询同时包含mill和lane的文档:
curl -XPOST 'localhost:9200/bank/_search?pretty' -d ' { "query": { "bool": { "must": [ { "match": { "address": "mill" } }, { "match": { "address": "lane" } } ] } } }'
修改bool参数,可以改为查询包含mill或者lane的文档:
curl -XPOST 'localhost:9200/bank/_search?pretty' -d ' { "query": { "bool": { "should": [ { "match": { "address": "mill" } }, { "match": { "address": "lane" } } ] } } }'
也可以改写为must_not,排除包含mill和lane的文档:
curl -XPOST 'localhost:9200/bank/_search?pretty' -d ' { "query": { "bool": { "must_not": [ { "match": { "address": "mill" } }, { "match": { "address": "lane" } } ] } } }'
bool查询可以同时使用must, should, must_not组成一个复杂的查询:
curl -XPOST 'localhost:9200/bank/_search?pretty' -d ' { "query": { "bool": { "must": [ { "match": { "age": "40" } } ], "must_not": [ { "match": { "state": "ID" } } ] } } }'
过滤查询
之前说过score字段指定了文档的分数,使用查询会计算文档的分数,最后通过分数确定哪些文档更相关,返回哪些文档。
有的时候我们可能对分数不感兴趣,就可以使用filter进行过滤,它不会去计算分值,因此效率也就更高一些。
filter过滤可以嵌套在bool查询内部使用,比如想要查询在2000-3000范围内的所有文档,可以执行下面的命令:
curl -XPOST 'localhost:9200/bank/_search?pretty' -d ' { "query": { "bool": { "must": { "match_all": {} }, "filter": { "range": { "balance": { "gte": 20000, "lte": 30000 } } } } } }'
ES除了上面介绍过的范围查询range、match_all、match、bool、filter还有很多其他的查询方式,这里就先不一一说明了。
聚合
聚合提供了用户进行分组和数理统计的能力,可以把聚合理解成SQL中的GROUP BY和分组函数。在ES中,你可以在一次搜索查询的时间内,即完成搜索操作也完成聚合操作,这样就降低了多次使用REST API造成的网络开销。
下面就是通过terms聚合的简单样例:
curl -XPOST 'localhost:9200/bank/_search?pretty' -d ' { "size": 0, "aggs": { "group_by_state": { "terms": { "field": "state" } } } }'
它类似于SQL中的下面的语句:
SELECT state, COUNT(*) FROM bank GROUP BY state ORDER BY COUNT(*) DESC
返回的数据:
"hits" : { "total" : 1000, "max_score" : 0.0, "hits" : [ ] }, "aggregations" : { "group_by_state" : { "buckets" : [ { "key" : "al", "doc_count" : 21 }, { "key" : "tx", "doc_count" : 17 }, { "key" : "id", "doc_count" : 15 }, { "key" : "ma", "doc_count" : 15 }, { "key" : "md", "doc_count" : 15 }, { "key" : "pa", "doc_count" : 15 }, { "key" : "dc", "doc_count" : 14 }, { "key" : "me", "doc_count" : 14 }, { "key" : "mo", "doc_count" : 14 }, { "key" : "nd", "doc_count" : 14 } ] } } }
由于size设置为0,它并没有返回文档的信息,只是返回了聚合的结果。
比如统计不同账户状态下的平均余额:
curl -XPOST 'localhost:9200/bank/_search?pretty' -d ' { "size": 0, "aggs": { "group_by_state": { "terms": { "field": "state" }, "aggs": { "average_balance": { "avg": { "field": "balance" } } } } } }'
聚合支持嵌套,举个例子,先按范围分组,在统计不同性别的账户余额:
curl -XPOST 'localhost:9200/bank/_search?pretty' -d ' { "size": 0, "aggs": { "group_by_age": { "range": { "field": "age", "ranges": [ { "from": 20, "to": 30 }, { "from": 30, "to": 40 }, { "from": 40, "to": 50 } ] }, "aggs": { "group_by_gender": { "terms": { "field": "gender" }, "aggs": { "average_balance": { "avg": { "field": "balance" } } } } } } } }'
聚合可以实现很多复杂的功能,而且ES也提供了很多复杂的聚合,这里作为引导篇。
本文转载自 linkedkeeper.com
Elasticsearch 数据搜索的更多相关文章
-
Elasticsearch 数据搜索篇·【入门级干货】
ES即简单又复杂,你可以快速的实现全文检索,又需要了解复杂的REST API.本篇就通过一些简单的搜索命令,帮助你理解ES的相关应用.虽然不能让你理解ES的原理设计,但是可以帮助你理解ES,探寻更多的 ...
-
Elasticsearch 数据搜索篇·【入门级干货】===转
ES即简单又复杂,你可以快速的实现全文检索,又需要了解复杂的REST API.本篇就通过一些简单的搜索命令,帮助你理解ES的相关应用.虽然不能让你理解ES的原理设计,但是可以帮助你理解ES,探寻更多的 ...
-
Elasticsearch 数据搜索篇
curl 'localhost:9200/_cat/indices?v' health index pri rep docs.count docs.deleted store.size pri.sto ...
-
[转] [Elasticsearch] 数据建模 - 处理关联关系(1)
[Elasticsearch] 数据建模 - 处理关联关系(1) 标签: 建模elasticsearch搜索搜索引擎 2015-08-16 23:55 6958人阅读 评论(0) 收藏 举报 分类: ...
-
Elasticsearch 数据查询
数据准备: PUT /shop { "settings": { "number_of_shards": 3, "number_of_replicas& ...
-
服务追踪数据使用 RabbitMQ 进行采集 + 数据存储使用 Elasticsearch + 数据展示使用 Kibana
服务追踪数据使用 RabbitMQ 进行采集 + 数据存储使用 Elasticsearch + 数据展示使用 Kibana https://www.cnblogs.com/xishuai/p/elk- ...
-
ElasticSearch入门-搜索(java api)
ElasticSearch入门-搜索(java api) package com.qlyd.searchhelper; import java.util.Map; import net.sf.json ...
-
大数据学习[16]--使用scroll实现Elasticsearch数据遍历和深度分页[转]
题目:使用scroll实现Elasticsearch数据遍历和深度分页 作者:星爷 出处: http://lxWei.github.io/posts/%E4%BD%BF%E7%94%A8scroll% ...
-
基于 MySQL Binlog 的 Elasticsearch 数据同步实践 原
一.背景 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品.订单等数据的多维度检索. 使用 Elasticsearch 存储业务数据可以 ...
随机推荐
-
IO(二)----字符流
计算机并不区分二进制文件与文本文件.所有的文件都是以二进制形式来存储的,因此,从本质上说,所有的文件都是二进制文件.所以字符流是建立在字节流之上的,它能够提供字符层次的编码和解码. 常见的码表 ASC ...
-
[ftp]Centos 创建 sftp 步骤
来自:http://blog.csdn.net/xinxin19881112/article/details/46831311 1.创建sftp组 groupadd sftp 2.创建一个sftp用户 ...
-
html5+css3实现跑动的爱心/动态水滴效果[原创][5+3时代]
大风起兮云飞扬,安得猛士兮走四方!html5+css3,不学不行. 做web开发已经有好几年了,见证了太多语言的崛起和陨落. 其实作为一个程序员最苦逼的事情莫过于每天要不停的追赶各大公司新出的框架和语 ...
-
Disassembly1:HelloWorld
我这里学习汇编语言的思路就是逆向C++源码. 先从最简单的一个程序入手:
-
2015 多校联赛 ——HDU5402(模拟)
For each test case, in the first line, you should print the maximum sum. In the next line you should ...
-
navicat for mysql 破解方法
https://www.cnblogs.com/da19951208/p/6403607.html 破解教程
-
kernel笔记——内核编译与进程管理
内核与操作系统 由于一些商业操作系统设计上的缺陷以及日益庞杂,“操作系统”的概念对很多人而言变得含糊不清.在进一步讨论Linux内核的话题前,我们先区分“内核”与“操作系统”这两个概念. 操作系统:指 ...
-
转载及总结:cron表达式详解,cron表达式写法,cron表达式例子
cron表达式格式:{秒数} {分钟} {小时} {日期} {月份} {星期} {年份(可为空)}例 "0 0 12 ? * WED" 在每星期三下午12:00 执行(年份通常 ...
-
Record for Individual Project ( Word frequency program )
1. 预计时间 ● 对问题总体的理解.规划:10 min ● 设计编写程序:5 h ● 调试: 分模块-40 min; 总体-40min ● 测试(性能分析).改进:1 h 2. 实际用时 ● 对 ...
-
eclipse更换workspace需要重新设置的内容
.jdk Window-->java-->Installed JREs,新增或修改你所需要的jdk版本,点击需要的jdk-->edit 在Default VM arguments里面 ...