UVa 10048: Audiophobia

时间:2022-08-28 18:36:59

这道题要求我们求出图中的给定的两个节点(一个起点一个终点,但这是无向图)之间所有“路径中最大权值”的最小值,这无疑是动态规划。

我开始时想到根据起点和终点用动态规划直接求结果,但最终由于题中S过大,会超时。

超时的代码如下:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <string>
#include <algorithm> using namespace std;
const int MAX = 1000000;
int w[100][100];
int vis[100];
int C,S,Q; int f(int s, int t)
{
vis[t]=1;
int minb=MAX,tmp;
for(int i=0; i<C; i++) if(!vis[i] && w[t][i]!=-1)
{
if(i==s) { minb=w[t][i]; continue;}
tmp = f(s,i);
tmp = (tmp > w[t][i] ? tmp : w[t][i]);
minb = (minb < tmp ? minb : tmp);
}
vis[t]=0;
return minb;
}
int main()
{
int c1,c2;
int Case=0;
while(cin >> C >> S >> Q && C!=0)
{
memset(w,-1,sizeof(w));
for(int i=0; i<S; i++) {
cin >> c1 >> c2; cin >> w[c1-1][c2-1]; w[c2-1][c1-1]=w[c1-1][c2-1];
}
if(Case) cout << endl;
cout << "Case #" << ++Case << endl; while(Q--)
{
memset(vis,0,sizeof(vis));
cin >> c1 >> c2;
int ans = f(c1-1,c2-1);
if(ans==MAX) cout << "no path\n";
else cout << ans << endl;
}
}
return 0;
}

被判超时后想到,由于S过大,即要求的起始节点对过多,最好一次性全部求出来。在uva的board中看到别人有使用Floyd_WarShall算法的,受到启发,就自己思考了一下。

Floyd_WarShall算法本身肯定无法完成这题的解答,但只要改写其更新节点值的式子就可以解决这道题。我将更改后的算法命名为Floyd_WarShallEx,代码如下:

void Floyd_WarShallEx()
{
for(int k=0; k<C; k++)
{
for(int i=0; i<C; i++)
{
for(int j=0; j<C; j++)
{
w[i][j] = (w[i][j] < (w[i][k]>w[k][j]?w[i][k]:w[k][j]) ? w[i][j] : (w[i][k]>w[k][j]?w[i][k]:w[k][j]));
}
}
}
}

其中C为图中节点数,w[i][j]表示节点对i,j之间题目所要求的结果。通过下式更新w[i][j]的值:

w[i][j] = (w[i][j] < (w[i][k]>w[k][j]?w[i][k]:w[k][j]) ? w[i][j] : (w[i][k]>w[k][j]?w[i][k]:w[k][j]));

至此,调用Floyd_WarShallEx函数就可以完成所有节点对题目要求的结果的计算。

完整的解题代码如下:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <string>
#include <algorithm> using namespace std;
const int MAX = 1000000;
int w[100][100];
int vis[100];
int C,S,Q; void Floyd_WarShallEx()
{
for(int k=0; k<C; k++)
{
for(int i=0; i<C; i++)
{
for(int j=0; j<C; j++)
{
w[i][j] = (w[i][j] < (w[i][k]>w[k][j]?w[i][k]:w[k][j]) ? w[i][j] : (w[i][k]>w[k][j]?w[i][k]:w[k][j]));
}
}
}
} int main()
{
int c1,c2;
int Case=0;
while(cin >> C >> S >> Q && C!=0)
{
for(int i=0; i<C; i++)
for(int j=0; j<C; j++)
w[i][j]=MAX;
for(int i=0; i<S; i++) {
cin >> c1 >> c2; cin >> w[c1-1][c2-1]; w[c2-1][c1-1]=w[c1-1][c2-1];
}
Floyd_WarShallEx(); if(Case) cout << endl;
cout << "Case #" << ++Case << endl; while(Q--)
{
cin >> c1 >> c2;
if(w[c1-1][c2-1]==MAX) cout << "no path\n";
else cout << w[c1-1][c2-1] << endl;
}
}
return 0;
}

附上题目:

Consider yourself lucky! Consider yourself lucky to be still breathing and having fun participating in this contest. But we apprehend that many of your descendants may not have this luxury. For, as you know, we are the dwellers of one of the most polluted cities on earth. Pollution is everywhere, both in the environment and in society and our lack of consciousness is simply aggravating the situation.

However, for the time being, we will consider only one type of pollution ­- the sound pollution. The loudness or intensity level of sound is usually measured in decibels and sound having intensity level 130 decibels or higher is considered painful. The intensity level of normal conversation is 60­-65 decibels and that of heavy traffic is 70-­80 decibels.

Consider the following city map where the edges refer to streets and the nodes refer to crossings. The integer on each edge is the average intensity level of sound (in decibels) in the corresponding street.

UVa 10048: Audiophobia

To get from crossing A to crossing G you may follow the following path: A­C­F­G. In that case you must be capable of tolerating sound intensity as high as 140 decibels. For the paths A­B­E­GA­B­D­G and A­C­F­D­G you must tolerate respectively 90, 120 and 80 decibels of sound intensity. There are other paths, too. However, it is clear that A­C­F­D­G is the most comfortable path since it does not demand you to tolerate more than 80 decibels.

In this problem, given a city map you are required to determine the minimum sound intensity level you must be able to tolerate in order to get from a given crossing to another.

Input

The input may contain multiple test cases.

The first line of each test case contains three integers UVa 10048: AudiophobiaUVa 10048: Audiophobia and UVa 10048: Audiophobiawhere C indicates the number of crossings (crossings are numbered using distinct integers ranging from 1 to C), S represents the number of streets and Q is the number of queries.

Each of the next S lines contains three integers: c1c2 and d indicating that the average sound intensity level on the street connecting the crossings c1 and c2 ( UVa 10048: Audiophobia) is d decibels.

Each of the next Q lines contains two integers c1 and c2 ( UVa 10048: Audiophobia) asking for the minimum sound intensity level you must be able to tolerate in order to get from crossing c1 to crossing c2.

The input will terminate with three zeros form CS and Q.

Output

For each test case in the input first output the test case number (starting from 1) as shown in the sample output. Then for each query in the input print a line giving the minimum sound intensity level (in decibels) you must be able to tolerate in order to get from the first to the second crossing in the query. If there exists no path between them just print the line ``no path".

Print a blank line between two consecutive test cases.

Sample Input

7 9 3
1 2 50
1 3 60
2 4 120
2 5 90
3 6 50
4 6 80
4 7 70
5 7 40
6 7 140
1 7
2 6
6 2
7 6 3
1 2 50
1 3 60
2 4 120
3 6 50
4 6 80
5 7 40
7 5
1 7
2 4
0 0 0

Sample Output

Case #1
80
60
60 Case #2
40
no path
80

UVa 10048: Audiophobia的更多相关文章

  1. uva 10048 Audiophobia&lpar;最小生成树)

    题目链接:10048 - Audiophobia 题目大意:有n个城市,和m条街道,每条街道有一个噪音值,q次去问,从城市a到城市b,路径上分贝值的最大值最小为多少. 解题思路:与uva 10099的 ...

  2. UVA - 10048 Audiophobia (Floyd应用)

    题意:求出两点之间所有路径最大权值的最小值. 思路:转变一下Floyd的形式即可: 注意:注意初始化问题,还有UVA奇葩的输出形式. 代码如下: #include<iostream> #i ...

  3. UVa 10048 - Audiophobia(Floyd变形)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  4. UVa 10048 Audiophobia【Floyd】

    题意:给出一个c个点,s条边组成的无向图,求一点到另一点的路径上最大权值最小的路径,输出这个值 可以将这个 d[i][j]=min(d[i][j],d[i][k]+d[k][j]) 改成 d[i][j ...

  5. UVA 10048 Audiophobia 任意两点的路径上最大的边

    题目是要求任意给定两点的的路径上最大的边,最终输出这些最大边中最小的值,也就是求一条路径使得这条路径上最大的边在所有连通两点的路径中最短.根据Floyd—Warshall算法改造一下就行了.dp[i] ...

  6. UVA - 10048 Audiophobia Floyd

    思路:套用Floyd算法思想,d(i, j) = min(d(i,j), max(d(i,k), d(k,j)),就能很方便求得任意两点之间的最小噪音路径. AC代码 #include <cst ...

  7. UVA - 10048 Audiophobia(Floyd求路径上最大值的最小)

    题目&分析: 思路: Floyd变形(见上述紫书分析),根据题目要求对应的改变判断条件来解题. 代码: #include <bits/stdc++.h> #define inf 0 ...

  8. uva 10048 Audiophobia UVA - 10048

    题目简介 一个无向正权图,求任意两个节点之间的路径里最短的路径长度. 直接Floyd解决,就是注意要把Floyd的DP式子改一下成 G[i][j]=min(G[i][j],max(G[i][k],G[ ...

  9. UVa 10048 &lpar;Floyd变形&rpar; Audiophobia

    题意: 给一个带权无向图,和一些询问,每次询问两个点之间最大权的最小路径. 分析: 紫书上的题解是错误的,应该是把原算法中的加号变成max即可.但推理过程还是类似的,如果理解了Floyd算法的话,这个 ...

随机推荐

  1. 迷惑很久,仅以个人想法谈谈MVC架构,希望大家多给点意见

    博主是非科班出身,所以和大部分新手有着一样的困惑,究竟什么才能算是MVC框架,总是在谈Model,View,Controller分离,可是究竟什么才能算是分离,而他们又是负责什么样的分工呢. 大二的时 ...

  2. How to download a website for offline usage

    wget -U Mozilla --recursive --no-clobber --page-requisites --html-extension --convert-links -- restr ...

  3. passwnger

    环境:ubuntu10.04 + nginx + passenger + ruby1.8.7 rails2.3.x #安装nginx(手动编译) $  mkdir -p /home/mouse/opt ...

  4. 设置Eclipse中文API提示信息

    准备工作:下载中文API到本机:http://download.java.net/jdk/jdk-api-localizations/jdk-api-zh-cn/publish/1.6.0/html_ ...

  5. UITableView的style详解

    在默认的UITableViewCell中,主要有三个系统控件,分别是两个Lable和一个imageView,两个Label,imageView(始终在最左边)的布局位置可以通过下面4个设置: UITa ...

  6. Nginx详解二十五:Nginx架构篇之Nginx常见的问题

    Nginx常见的问题 1.相同server_name多个虚拟主机优先级访问,是按读取文件的优先级来排序 在/opt/app/下准备3个code文件夹,下面放入3个html文件,里面的内容分别是code ...

  7. grid - 使用相同的名称命名网格线和设置网格项目位置

    1.使用repeat()函数可以给网格线分配相同的名称.这可以节省一定的时间 使用repeat()函数可以给网格线命名,这也导致多个网格线具有相同的网格线名称. 相同网格线名称指定网格线的位置和名称, ...

  8. cocos2dx 3&period;x&lpar;纯代码实现弹出对话框&sol;提示框&sol;警告框&rpar;

    头文件: // //  PopAlertDialog.h //  macstudycocos2dx // //  Created by WangWei on 15/6/8. // // #ifndef ...

  9. python3&plus;ftplib实现ftp客户端

    一.程序说明 1.1 程序实现关键点 python实现ftp客户端,主要会遇到以下四个问题: 第一个问题是使用什么包实现----我们这里是使用标准库中的ftplib 第二个问题是怎么连接登录ftp服务 ...

  10. 死磕nginx系列--使用nginx做负载均衡

    使用nginx做负载均衡的两大模块: upstream 定义负载节点池. location 模块 进行URL匹配. proxy模块 发送请求给upstream定义的节点池. upstream模块解读 ...