博弈论——sg,mex
sg性质:1.在末态的状态点为N态。
2.P态的下一步有一个是N态
3.N态的下一步全部是P态。
当然这是对于单点一个游戏的情形,也相当于NIM只有一堆石子。
mex(minimal excludant),很俗地可以解释为:mex{S}表示S集合中从0开始,最小未出现的数字。
关于sg与mex的关系,可以引用这里http://www.cnblogs.com/Knuth/archive/2009/09/05/1561007.html的一段话:
对于一个给定的有向无环图,定义关于图的每个顶点的Sprague-Garundy函数g如下:g(x)=mex{ g(y) | y是x的后继 }。
来看一下SG函数的性质。首先,所有的terminal position所对应的顶点,也就是没有出边的顶点,其SG值为0,因为它的后继集合是空集。然后对于一个g(x)=0的顶点x,它的所有后继y都满足g(y)!=0。对于一个g(x)!=0的顶点,必定存在一个后继y满足g(y)=0。
以上这三句话表明,顶点x所代表的postion是P-position当且仅当g(x)=0(跟P-positioin/N-position的定义的那三句话是完全对应的)。
关于sg叠加的效果,很神奇发现它们满足sg(G) = sg(G1)^sg(G2)^……^sg(Gn)。对于与博弈有关的核心就是这些了。多刷刷题,自然心里就明了了。
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
int sg[][];
int stamp[*]={},stamps=;
int sgx(int r,int c){
stamps++;
for(int i=;i<=r-i;i++) // 1 c(只有一行)【r-1 c】 不能被继续,故需要从2开始。
stamp[sg[i][c]^sg[r-i][c]] = stamps;
for(int i=;i<=c-i;i++)
stamp[sg[r][i]^sg[r][c-i]] = stamps;
for(int i=;;i++)
if(stamp[i] < stamps)
{
sg[r][c] = i;
break;
}
return sg[r][c];
}
int main()
{
for(int i=;i<;i++)
sg[][i] = sg[i][] = ; for(int i=;i<;i++)
for(int j=i;j<;j++)
sg[i][j] = sg[j][i] = sgx(i,j);
int n,m;
while(scanf("%d%d",&n,&m) != EOF){
if(sg[n][m]) printf("WIN\n");
else printf("LOSE\n");
}
return ;
}
poj2311的更多相关文章
-
[poj2311]Cutting Game_博弈论
Cutting Game poj-2311 题目大意:题目链接 注释:略. 想法: 我们发现一次操作就是将这个ICG对应游戏图上的一枚棋子变成两枚. 又因为SG定理的存在,记忆化搜索即可. 最后,附上 ...
-
POJ2311 Cutting Game 博弈 SG函数
Cutting Game Description Urej loves to play various types of dull games. He usually asks other peopl ...
-
POJ2311 Cutting Game
题意 Language:Default Cutting Game Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6007 Acc ...
-
POJ2311 Cutting Game(博弈论)
总时间限制: 1000ms 内存限制: 65536kB 描述 Urej loves to play various types of dull games. He usually asks other ...
-
【博弈论】【SG函数】poj2311 Cutting Game
由于异或运算满足结合律,我们把当前状态的SG函数定义为 它所能切割成的所有纸片对的两两异或和之外的最小非负整数. #include<cstdio> #include<set> ...
-
SG函数博弈——poj2311
关于SG函数的博弈 首先定义必败态 x : SG[x]=0 设任意一个状态y,到所有y能到达的状态连一条边,令这些后继为z y : SG[y]=mex(SG[z]) SG[y]==0 : y就是必败态 ...
-
$POJ2311\ Cutting\ Game$ 博弈论
正解:博弈论 解题报告: 传送门! 首先看到说,谁先$balabala$,因为$SG$函数是无法解决这类问题的,于是考虑转化成"不能操作者赢/输"的问题,不难想到先剪出$1\cdo ...
-
博弈问题之SG函数博弈小结
SG函数: 给定一个有向无环图和一个起始顶点上的一枚棋子,两名选手交替的将这枚棋子沿有向边进行移动,无法移 动者判负.事实上,这个游戏可以认为是所有Impartial Combinatorial Ga ...
-
ACM学习大纲
1 推荐题库 •http://ace.delos.com/usaco/ 美国的OI 题库,如果是刚入门的新手,可以尝试先把它刷通,能够学到几乎全部的基础算法极其优化,全部的题解及标程还有题目翻译可以b ...
随机推荐
-
SOA服务类项目开发模式
开发模式 以需求用例为基,Cas e&Coding两条线并行,服务(M)&消费(VC)分离,单元.接口.功能.集成四层质量管理,自动化集成.测试.交付全程支持. 3个大阶段(需求分析阶 ...
-
AngularJS Best Practices: resource
A factory which creates a resource object that lets you interact with RESTful server-side data sourc ...
-
less中的减号处理
很奇怪,less中对减号似乎没有特别说明,很容易让人无用. @div1Width:500; @div2Width:200px; .div3cls { width:@div1Width-@div2Wid ...
-
stash存储
比如我的fsm_ngh分支,被a修改了,可是我本地还有没有提交的东西,就不能切换分支也不能下拉,也不能直接上传,否则分支会混乱. 这个时候stash的优点来了,先把你修改的暂存隐藏起来,然后pull远 ...
-
Android List去掉重复数据
今天用数据库获取数据发现有个字段的数据重复了,于是就写了下面这个方法去除重复的数据. public static List<String> removeDuplicate(List< ...
-
严格次小生成树(Bzoj1977:[Beijing2010组队]次小生成树)
非严格次小生成树 很简单,先做最小生成树 然后枚举没加入的边加入,替换掉这个环内最大的边 最后取\(min\) 严格次小生成树 还是一样的 可以考虑维护一个严格次大值 最大值和枚举的边相同就替换次大值 ...
-
Azure CosmosDB (11) MongoDB概念
<Windows Azure Platform 系列文章目录> Azure Cosmos DB兼容MongoDB的API,下表将帮助我们更容易理解MongoDB中的一些概念: SQL概念 ...
-
SQL Server数据类型int、bigint、smallint、tinyint对比表
SQL Server数据类型int.bigint.smallint.tinyint对比表 数据类型 范围 存储 bigint -2^63 (-9,223,372,036,854,775,808) 到 ...
-
JAVA类与类之间的全部关系简述+代码详解
本文转自: https://blog.csdn.net/wq6ylg08/article/details/81092056类和类之间关系包括了 is a,has a, use a三种关系(1)is a ...
-
libgdx学习记录5——演员Actor
Actor也是libgdx中非常重要的一个元素,一般与stage配合一起使用.Actor能够设置大小,位置,旋转和动画等. 我们自定义的Actor一般需要继承于Actor,并且重写其中的act和dra ...