Sqoop是一个用来将Hadoop和关系型数据库中的数据相互转移的工具,可以将一个关系型数据库(例如 : MySQL ,Oracle ,Postgres等)中的数据导进到Hadoop的HDFS中,也可以将HDFS的数据导进到关系型数据库中。
Sqoop中一大亮点就是可以通过hadoop的mapreduce把数据从关系型数据库中导入数据到HDFS。
一、安装sqoop
1、下载sqoop压缩包,并解压
压缩包分别是:sqoop-1.2.0-CDH3B4.tar.gz,hadoop-0.20.2-CDH3B4.tar.gz, Mysql JDBC驱动包mysql-connector-java-5.1.10-bin.jar
1
|
[root@node1 ~] # ll
|
1
2
3
|
drwxr-xr-x 15 root root 4096 Feb 22 2011 hadoop-0.20.2-CDH3B4
-rw-r--r-- 1 root root 724225 Sep 15 06:46 mysql-connector-java-5.1.10-bin.jar
drwxr-xr-x 11 root root 4096 Feb 22 2011 sqoop-1.2.0-CDH3B4
|
2、将sqoop-1.2.0-CDH3B4拷贝到/home/hadoop目录下,并将Mysql JDBC驱动包和hadoop-0.20.2-CDH3B4下的hadoop-core-0.20.2-CDH3B4.jar至sqoop-1.2.0-CDH3B4/lib下,最后修改一下属主。
1
2
3
4
5
|
[root@node1 ~] # cp mysql-connector-java-5.1.10-bin.jar sqoop-1.2.0-CDH3B4/lib
[root@node1 ~] # cp hadoop-0.20.2-CDH3B4/hadoop-core-0.20.2-CDH3B4.jar sqoop-1.2.0-CDH3B4/lib
[root@node1 ~] # chown -R hadoop:hadoop sqoop-1.2.0-CDH3B4
[root@node1 ~] # mv sqoop-1.2.0-CDH3B4 /home/hadoop
[root@node1 ~] # ll /home/hadoop
|
1
2
3
4
5
6
7
8
9
10
11
12
|
total 35748
-rw-rw-r-- 1 hadoop hadoop 343 Sep 15 05:13 derby.log
drwxr-xr-x 13 hadoop hadoop 4096 Sep 14 16:16 hadoop-0.20.2
drwxr-xr-x 9 hadoop hadoop 4096 Sep 14 20:21 hive-0.10.0
-rw-r--r-- 1 hadoop hadoop 36524032 Sep 14 20:20 hive-0.10.0.tar.gz
drwxr-xr-x 8 hadoop hadoop 4096 Sep 25 2012 jdk1.7
drwxr-xr-x 12 hadoop hadoop 4096 Sep 15 00:25 mahout-distribution-0.7
drwxrwxr-x 5 hadoop hadoop 4096 Sep 15 05:13 metastore_db
-rw-rw-r-- 1 hadoop hadoop 406 Sep 14 16:02 scp.sh
drwxr-xr-x 11 hadoop hadoop 4096 Feb 22 2011 sqoop-1.2.0-CDH3B4
drwxrwxr-x 3 hadoop hadoop 4096 Sep 14 16:17 temp
drwxrwxr-x 3 hadoop hadoop 4096 Sep 14 15:59 user
|
3、配置configure-sqoop,注释掉对于HBase和ZooKeeper的检查
1
|
[root@node1 bin] # pwd
|
1
|
/home/hadoop/sqoop-1.2.0-CDH3B4/bin
|
1
|
[root@node1 bin] # vi configure-sqoop
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
|
#!/bin/bash
#
# Licensed to Cloudera, Inc. under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
.
.
.
# Check: If we can't find our dependencies, give up here.
if [ ! -d "${HADOOP_HOME}" ]; then
echo "Error: $HADOOP_HOME does not exist!"
echo 'Please set $HADOOP_HOME to the root of your Hadoop installation.'
exit 1
fi
#if [ ! -d "${HBASE_HOME}" ]; then
# echo "Error: $HBASE_HOME does not exist!"
# echo 'Please set $HBASE_HOME to the root of your HBase installation.'
# exit 1
#fi
#if [ ! -d "${ZOOKEEPER_HOME}" ]; then
# echo "Error: $ZOOKEEPER_HOME does not exist!"
# echo 'Please set $ZOOKEEPER_HOME to the root of your ZooKeeper installation.'
# exit 1
#fi
|
4、修改/etc/profile和.bash_profile文件,添加Hadoop_Home,调整PATH
1
|
[hadoop@node1 ~]$ vi .bash_profile
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
# .bash_profile
# Get the aliases and functions
if [ -f ~/.bashrc ]; then
. ~/.bashrc
fi
# User specific environment and startup programs
HADOOP_HOME=/home/hadoop/hadoop-0.20.2
PATH=$HADOOP_HOME/bin:$PATH:$HOME/bin
export HIVE_HOME=/home/hadoop/hive-0.10.0
export MAHOUT_HOME=/home/hadoop/mahout-distribution-0.7
export PATH HADOOP_HOME
|
二、测试Sqoop
1、查看mysql中的数据库:
1
|
[hadoop@node1 bin]$ . /sqoop list-databases --connect jdbc:mysql: //192 .168.1.152:3306/ --username sqoop --password sqoop
|
1
2
3
4
5
6
7
|
13/09/15 07:17:16 WARN tool.BaseSqoopTool: Setting your password on the command-line is insecure. Consider using -P instead.
13/09/15 07:17:17 INFO manager.MySQLManager: Executing SQL statement: SHOW DATABASES
information_schema
mysql
performance_schema
sqoop
test
|
2、将mysql的表导入到hive中:
1
|
[hadoop@node1 bin]$ . /sqoop import --connect jdbc:mysql: //192 .168.1.152:3306 /sqoop --username sqoop --password sqoop --table test --hive- import -m 1
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
|
13/09/15 08:15:01 WARN tool.BaseSqoopTool: Setting your password on the command-line is insecure. Consider using -P instead.
13/09/15 08:15:01 INFO tool.BaseSqoopTool: Using Hive-specific delimiters for output. You can override
13/09/15 08:15:01 INFO tool.BaseSqoopTool: delimiters with --fields-terminated-by, etc.
13/09/15 08:15:01 INFO tool.CodeGenTool: Beginning code generation
13/09/15 08:15:01 INFO manager.MySQLManager: Executing SQL statement: SELECT t.* FROM `test` AS t LIMIT 1
13/09/15 08:15:02 INFO manager.MySQLManager: Executing SQL statement: SELECT t.* FROM `test` AS t LIMIT 1
13/09/15 08:15:02 INFO orm.CompilationManager: HADOOP_HOME is /home/hadoop/hadoop-0.20.2/bin/..
13/09/15 08:15:02 INFO orm.CompilationManager: Found hadoop core jar at: /home/hadoop/hadoop-0.20.2/bin/../hadoop-0.20.2-core.jar
13/09/15 08:15:03 INFO orm.CompilationManager: Writing jar file: /tmp/sqoop-hadoop/compile/a71936fd2bb45ea6757df22751a320e3/test.jar
13/09/15 08:15:03 WARN manager.MySQLManager: It looks like you are importing from mysql.
13/09/15 08:15:03 WARN manager.MySQLManager: This transfer can be faster! Use the --direct
13/09/15 08:15:03 WARN manager.MySQLManager: option to exercise a MySQL-specific fast path.
13/09/15 08:15:03 INFO manager.MySQLManager: Setting zero DATETIME behavior to convertToNull (mysql)
13/09/15 08:15:03 INFO mapreduce.ImportJobBase: Beginning import of test
13/09/15 08:15:04 INFO manager.MySQLManager: Executing SQL statement: SELECT t.* FROM `test` AS t LIMIT 1
13/09/15 08:15:05 INFO mapred.JobClient: Running job: job_201309150505_0009
13/09/15 08:15:06 INFO mapred.JobClient: map 0% reduce 0%
13/09/15 08:15:34 INFO mapred.JobClient: map 100% reduce 0%
13/09/15 08:15:36 INFO mapred.JobClient: Job complete: job_201309150505_0009
13/09/15 08:15:36 INFO mapred.JobClient: Counters: 5
13/09/15 08:15:36 INFO mapred.JobClient: Job Counters
13/09/15 08:15:36 INFO mapred.JobClient: Launched map tasks=1
13/09/15 08:15:36 INFO mapred.JobClient: FileSystemCounters
13/09/15 08:15:36 INFO mapred.JobClient: HDFS_BYTES_WRITTEN=583323
13/09/15 08:15:36 INFO mapred.JobClient: Map-Reduce Framework
13/09/15 08:15:36 INFO mapred.JobClient: Map input records=65536
13/09/15 08:15:36 INFO mapred.JobClient: Spilled Records=0
13/09/15 08:15:36 INFO mapred.JobClient: Map output records=65536
13/09/15 08:15:36 INFO mapreduce.ImportJobBase: Transferred 569.6514 KB in 32.0312 seconds (17.7842 KB/sec)
13/09/15 08:15:36 INFO mapreduce.ImportJobBase: Retrieved 65536 records.
13/09/15 08:15:36 INFO hive.HiveImport: Removing temporary files from import process: test/_logs
13/09/15 08:15:36 INFO hive.HiveImport: Loading uploaded data into Hive
13/09/15 08:15:36 INFO manager.MySQLManager: Executing SQL statement: SELECT t.* FROM `test` AS t LIMIT 1
13/09/15 08:15:36 INFO manager.MySQLManager: Executing SQL statement: SELECT t.* FROM `test` AS t LIMIT 1
13/09/15 08:15:41 INFO hive.HiveImport: Logging initialized using configuration in jar:file:/home/hadoop/hive-0.10.0/lib/hive-common-0.10.0.jar!/hive-log4j.properties
13/09/15 08:15:41 INFO hive.HiveImport: Hive history file=/tmp/hadoop/hive_job_log_hadoop_201309150815_1877092059.txt
13/09/15 08:16:10 INFO hive.HiveImport: OK
13/09/15 08:16:10 INFO hive.HiveImport: Time taken: 28.791 seconds
13/09/15 08:16:11 INFO hive.HiveImport: Loading data to table default.test
13/09/15 08:16:12 INFO hive.HiveImport: Table default.test stats: [num_partitions: 0, num_files: 1, num_rows: 0, total_size: 583323, raw_data_size: 0]
13/09/15 08:16:12 INFO hive.HiveImport: OK
13/09/15 08:16:12 INFO hive.HiveImport: Time taken: 1.704 seconds
13/09/15 08:16:12 INFO hive.HiveImport: Hive import complete.
|
三、Sqoop 命令
Sqoop大约有13种命令,和几种通用的参数(都支持这13种命令),这里先列出这13种命令。
接着列出Sqoop的各种通用参数,然后针对以上13个命令列出他们自己的参数。Sqoop通用参数又分Common arguments,Incremental import arguments,Output line formatting arguments,Input parsing arguments,Hive arguments,HBase arguments,Generic Hadoop command-line arguments,下面说明一下几个常用的命令:
1.Common arguments
通用参数,主要是针对关系型数据库链接的一些参数
1)列出mysql数据库中的所有数据库
1
|
sqoop list-databases –connect jdbc:mysql: //localhost :3306/ –username root –password 123456
|
2)连接mysql并列出test数据库中的表
1
|
sqoop list-tables –connect jdbc:mysql: //localhost :3306 /test –username root –password 123456
|
命令中的test为mysql数据库中的test数据库名称 username password分别为mysql数据库的用户密码
3)将关系型数据的表结构复制到hive中,只是复制表的结构,表中的内容没有复制过去。
1
2
3
|
sqoop create-hive-table –connect jdbc:mysql: //localhost :3306 /test
–table sqoop_test –username root –password 123456 –hive-table
test
|
其中 –table sqoop_test为mysql中的数据库test中的表 –hive-table
test 为hive中新建的表名称
4)从关系数据库导入文件到hive中
1
2
3
|
sqoop import –connect jdbc:mysql: //localhost :3306 /zxtest –username
root –password 123456 –table sqoop_test –hive- import –hive-table
s_test -m 1
|
5)将hive中的表数据导入到mysql中,在进行导入之前,mysql中的表
hive_test必须已经提起创建好了。
1
2
3
|
sqoop export –connect jdbc:mysql: //localhost :3306 /zxtest –username
root –password root –table hive_test – export - dir
/user/hive/warehouse/new_test_partition/dt =2012-03-05
|
6)从数据库导出表的数据到HDFS上文件
1
2
3
4
|
. /sqoop import –connect
jdbc:mysql: //10 .28.168.109:3306 /compression –username=hadoop
–password=123456 –table HADOOP_USER_INFO -m 1 –target- dir
/user/test
|
7)从数据库增量导入表数据到hdfs中
1
2
3
4
|
. /sqoop import –connect jdbc:mysql: //10 .28.168.109:3306 /compression
–username=hadoop –password=123456 –table HADOOP_USER_INFO -m 1
–target- dir /user/test –check-column id –incremental append
–last-value 3
|