本文实例讲述了Python实现的径向基(RBF)神经网络。分享给大家供大家参考,具体如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
|
from numpy import array, append, vstack, transpose, reshape, \
dot, true_divide, mean, exp, sqrt, log, \
loadtxt, savetxt, zeros, frombuffer
from numpy.linalg import norm, lstsq
from multiprocessing import Process, Array
from random import sample
from time import time
from sys import stdout
from ctypes import c_double
from h5py import File
def metrics(a, b):
return norm(a - b)
def gaussian (x, mu, sigma):
return exp( - metrics(mu, x) * * 2 / ( 2 * sigma * * 2 ))
def multiQuadric (x, mu, sigma):
return pow (metrics(mu,x) * * 2 + sigma * * 2 , 0.5 )
def invMultiQuadric (x, mu, sigma):
return pow (metrics(mu,x) * * 2 + sigma * * 2 , - 0.5 )
def plateSpine (x,mu):
r = metrics(mu,x)
return (r * * 2 ) * log(r)
class Rbf:
def __init__( self , prefix = 'rbf' , workers = 4 , extra_neurons = 0 , from_files = None ):
self .prefix = prefix
self .workers = workers
self .extra_neurons = extra_neurons
# Import partial model
if from_files is not None :
w_handle = self .w_handle = File (from_files[ 'w' ], 'r' )
mu_handle = self .mu_handle = File (from_files[ 'mu' ], 'r' )
sigma_handle = self .sigma_handle = File (from_files[ 'sigma' ], 'r' )
self .w = w_handle[ 'w' ]
self .mu = mu_handle[ 'mu' ]
self .sigmas = sigma_handle[ 'sigmas' ]
self .neurons = self .sigmas.shape[ 0 ]
def _calculate_error( self , y):
self .error = mean( abs ( self .os - y))
self .relative_error = true_divide( self .error, mean(y))
def _generate_mu( self , x):
n = self .n
extra_neurons = self .extra_neurons
# TODO: Make reusable
mu_clusters = loadtxt( 'clusters100.txt' , delimiter = '\t' )
mu_indices = sample( range (n), extra_neurons)
mu_new = x[mu_indices, :]
mu = vstack((mu_clusters, mu_new))
return mu
def _calculate_sigmas( self ):
neurons = self .neurons
mu = self .mu
sigmas = zeros((neurons, ))
for i in xrange (neurons):
dists = [ 0 for _ in xrange (neurons)]
for j in xrange (neurons):
if i ! = j:
dists[j] = metrics(mu[i], mu[j])
sigmas[i] = mean(dists) * 2
# max(dists) / sqrt(neurons * 2))
return sigmas
def _calculate_phi( self , x):
C = self .workers
neurons = self .neurons
mu = self .mu
sigmas = self .sigmas
phi = self .phi = None
n = self .n
def heavy_lifting(c, phi):
s = jobs[c][ 1 ] - jobs[c][ 0 ]
for k, i in enumerate ( xrange (jobs[c][ 0 ], jobs[c][ 1 ])):
for j in xrange (neurons):
# phi[i, j] = metrics(x[i,:], mu[j])**3)
# phi[i, j] = plateSpine(x[i,:], mu[j]))
# phi[i, j] = invMultiQuadric(x[i,:], mu[j], sigmas[j]))
phi[i, j] = multiQuadric(x[i,:], mu[j], sigmas[j])
# phi[i, j] = gaussian(x[i,:], mu[j], sigmas[j]))
if k % 1000 = = 0 :
percent = true_divide(k, s) * 100
print (c, ': {:2.2f}%' . format (percent))
print (c, ': Done' )
# distributing the work between 4 workers
shared_array = Array(c_double, n * neurons)
phi = frombuffer(shared_array.get_obj())
phi = phi.reshape((n, neurons))
jobs = []
workers = []
p = n / C
m = n % C
for c in range (C):
jobs.append((c * p, (c + 1 ) * p + (m if c = = C - 1 else 0 )))
worker = Process(target = heavy_lifting, args = (c, phi))
workers.append(worker)
worker.start()
for worker in workers:
worker.join()
return phi
def _do_algebra( self , y):
phi = self .phi
w = lstsq(phi, y)[ 0 ]
os = dot(w, transpose(phi))
return w, os
# Saving to HDF5
os_h5 = os_handle.create_dataset( 'os' , data = os)
def train( self , x, y):
self .n = x.shape[ 0 ]
## Initialize HDF5 caches
prefix = self .prefix
postfix = str ( self .n) + '-' + str ( self .extra_neurons) + '.hdf5'
name_template = prefix + '-{}-' + postfix
phi_handle = self .phi_handle = File (name_template. format ( 'phi' ), 'w' )
os_handle = self .w_handle = File (name_template. format ( 'os' ), 'w' )
w_handle = self .w_handle = File (name_template. format ( 'w' ), 'w' )
mu_handle = self .mu_handle = File (name_template. format ( 'mu' ), 'w' )
sigma_handle = self .sigma_handle = File (name_template. format ( 'sigma' ), 'w' )
## Mu generation
mu = self .mu = self ._generate_mu(x)
self .neurons = mu.shape[ 0 ]
print ( '({} neurons)' . format ( self .neurons))
# Save to HDF5
mu_h5 = mu_handle.create_dataset( 'mu' , data = mu)
## Sigma calculation
print ( 'Calculating Sigma...' )
sigmas = self .sigmas = self ._calculate_sigmas()
# Save to HDF5
sigmas_h5 = sigma_handle.create_dataset( 'sigmas' , data = sigmas)
print ( 'Done' )
## Phi calculation
print ( 'Calculating Phi...' )
phi = self .phi = self ._calculate_phi(x)
print ( 'Done' )
# Saving to HDF5
print ( 'Serializing...' )
phi_h5 = phi_handle.create_dataset( 'phi' , data = phi)
del phi
self .phi = phi_h5
print ( 'Done' )
## Algebra
print ( 'Doing final algebra...' )
w, os = self .w, _ = self ._do_algebra(y)
# Saving to HDF5
w_h5 = w_handle.create_dataset( 'w' , data = w)
os_h5 = os_handle.create_dataset( 'os' , data = os)
## Calculate error
self ._calculate_error(y)
print ( 'Done' )
def predict( self , test_data):
mu = self .mu = self .mu.value
sigmas = self .sigmas = self .sigmas.value
w = self .w = self .w.value
print ( 'Calculating phi for test data...' )
phi = self ._calculate_phi(test_data)
os = dot(w, transpose(phi))
savetxt( 'iok3834.txt' , os, delimiter = '\n' )
return os
@property
def summary( self ):
return '\n' .join( \
[ '-----------------' ,
'Training set size: {}' . format ( self .n),
'Hidden layer size: {}' . format ( self .neurons),
'-----------------' ,
'Absolute error : {:02.2f}' . format ( self .error),
'Relative error : {:02.2f}%' . format ( self .relative_error * 100 )])
def predict(test_data):
mu = File ( 'rbf-mu-212243-2400.hdf5' , 'r' )[ 'mu' ].value
sigmas = File ( 'rbf-sigma-212243-2400.hdf5' , 'r' )[ 'sigmas' ].value
w = File ( 'rbf-w-212243-2400.hdf5' , 'r' )[ 'w' ].value
n = test_data.shape[ 0 ]
neur = mu.shape[ 0 ]
mu = transpose(mu)
mu.reshape((n, neur))
phi = zeros((n, neur))
for i in range (n):
for j in range (neur):
phi[i, j] = multiQuadric(test_data[i,:], mu[j], sigmas[j])
os = dot(w, transpose(phi))
savetxt( 'iok3834.txt' , os, delimiter = '\n' )
return os
|
希望本文所述对大家Python程序设计有所帮助。
原文链接:http://www.cnblogs.com/hhh5460/p/4319654.html