绘制直线,三角形,正方形
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
|
import matplotlib.pyplot as plt
def plotLine():
x = [ 1 , 2 , 3 , 4 , 5 ]
y = [ 3 , 3 , 3 , 3 , 3 ]
plt.figure(figsize = ( 100 , 100 ),dpi = 1 )
plt.plot(x,y,linewidth = 150 )
plt.axis( 'off' )
plt.savefig( 'C:\\Users\\Administrator\\Desktop\\分形图\\a.jpg' ,dpi = 1 )
plt.show()
plt.close()
def plotTriangle():
x = [ 1 , 3 , 1 , 1 ]
y = [ 1 , 1 , 3 , 1 ]
plt.figure(figsize = ( 100 , 100 ),dpi = 1 )
plt.plot(x,y,linewidth = 150 )
plt.axis( 'off' )
plt.savefig( 'C:\\Users\\Administrator\\Desktop\\分形图\\b.jpg' ,dpi = 1 )
plt.show()
plt.close()
def plotSquare():
x = [ 1 , 3 , 3 , 1 , 1 ]
y = [ 1 , 1 , 3 , 3 , 1 ]
plt.figure(figsize = ( 100 , 100 ),dpi = 1 )
plt.plot(x,y,linewidth = 150 )
plt.axis( 'off' )
plt.savefig( 'C:\\Users\\Administrator\\Desktop\\分形图\\c.jpg' ,dpi = 1 )
plt.show()
plt.close()
plotLine()
plotTriangle()
plotSquare()
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
|
from datetime import datetime
import os
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from six.moves import xrange
data = np.load( 'data/final37.npy' )
data_images = data
data_images = data_images.reshape( - 1 , 3 , 61 )
# data_images = data_images[500:1000,:,:]
for i in range ( 2000 ):
plt.figure(figsize = ( 100 , 100 ),dpi = 1 )
plt.plot(data_images[i][ 0 ][ 0 : 30 ],data_images[i][ 0 ][ 30 : 60 ],color = 'blue' ,linewidth = 150 )
plt.plot(data_images[i][ 1 ][ 0 : 30 ],data_images[i][ 1 ][ 30 : 60 ],color = 'red' ,linewidth = 150 )
plt.plot(data_images[i][ 2 ][ 0 : 30 ],data_images[i][ 2 ][ 30 : 60 ],color = 'green' ,linewidth = 150 )
plt.axis( 'off' )
plt.savefig( 'C:\\Users\\Administrator\\Desktop\\调整分辨率\\原始图\\resouce%d.jpg' % (i),dpi = 1 )
plt.close()
#################################################################################
# 生成随机分叉图
# import random
# import numpy as np
# import operator
# import os
# import copy
# from matplotlib.font_manager import FontProperties
# from scipy.interpolate import lagrange
# import random
# import matplotlib.pyplot as plt
# np.set_printoptions(threshold=np.inf) #输出全部矩阵不带省略号
# # random.seed(10)
# finaldata = []
# for iy in range(100):
# #固定一个点,尽量使点固定在0-1正方形的中间 #小数点后16位
# pointx = random.uniform(0.3,0.7)
# pointy = random.uniform(0.3,0.7)
# #################################################
# #主分支在上方
# a1x = random.uniform(pointx,0.8)#使第二个点尽量不那么大
# a2x = random.uniform(a1x,1)
# a3x = random.uniform(a2x,1)
# a1y = random.uniform(pointy,0.8)
# a2y = random.uniform(a1y,1)
# a3y = random.uniform(a2y,1)
# ax = [pointx,a1x,a2x,a3x]
# ay = [pointy,a1y,a2y,a3y]
# # print(ax)
# # print(ay)
# #对主分支a段进行插值
# #在ax相同索引直接分别插两个点,最后a段长度由4变成10,既得final_ax
# # print(ay)
# final_ax = []
# final_ay = []
# for i in range(len(ax)-1):
# #round(data,8)小数点保留8位四舍五入
# f = lagrange([round(ax[i],8),round(ax[i+1],8)],[round(ay[i],8),round(ay[i+1],8)])
# insertax = np.linspace(ax[i],ax[i+1],4)#插入2个点,小数点后8位
# insertay = f(insertax)
# for axi in insertax:
# final_ax.append(axi)
# for ayi in insertay:
# final_ay.append(ayi)
# del final_ax[4]
# del final_ax[7]
# del final_ay[4]
# del final_ay[7]
# #################################################
# # #左下分支
# b1x = random.uniform(0.2,pointx)#使第二个点尽量不那么小
# b2x = random.uniform(0,b1x)
# b3x = random.uniform(0,b2x)
# b1y = random.uniform(0.2,pointy)
# b2y = random.uniform(0,b1y)
# b3y = random.uniform(0,b2y)
# bx = [b3x,b2x,b1x,pointx]
# by = [b3y,b2y,b1y,pointy]
# #对左下分支b段进行插值
# final_bx = []
# final_by = []
# for i in range(len(bx)-1):
# f = lagrange([round(bx[i],8),round(bx[i+1],8)],[round(by[i],8),round(by[i+1],8)])
# insertbx = np.linspace(bx[i],bx[i+1],4)
# insertby = f(insertbx)
# for bxi in insertbx:
# final_bx.append(bxi)
# for byi in insertby:
# final_by.append(byi)
# del final_bx[4]
# del final_bx[7]
# del final_by[4]
# del final_by[7]
#
# ##################################################
# #右下分支
# c1x = random.uniform(pointx,0.8)#使第二个点尽量不那么大
# c2x = random.uniform(c1x,1)
# c3x = random.uniform(c2x,1)
# c1y = random.uniform(0.2,pointy)
# c2y = random.uniform(0,c1y)
# c3y = random.uniform(0,c2y)
# cx = [pointx,c1x,c2x,c3x]
# cy = [pointy,c1y,c2y,c3y]
# #对右下分支段进行插值
# final_cx = []
# final_cy = []
# for i in range(len(cx)-1):
# f = lagrange([round(cx[i],8),round(cx[i+1],8)],[round(cy[i],8),round(cy[i+1],8)])
# insertcx = np.linspace(cx[i],cx[i+1],4)
# insertcy = f(insertcx)
# for cxi in insertcx:
# final_cx.append(cxi)
# for cyi in insertcy:
# final_cy.append(cyi)
# del final_cx[4]
# del final_cx[7]
# del final_cy[4]
# del final_cy[7]
# ####################################################
# x = [final_ax,final_bx,final_cx]#三分叉,上为a,左下b,右下c
# y = [final_ay,final_by,final_cy]
# diameter_a = round(random.uniform(0.2,0.25),8)
# diameter_b = round(random.uniform(0.1,0.2),8)
# diameter_c = round(random.uniform(0.1,0.2),8)
# final_a = []#长度为21前10个x坐标点,后面10个是y坐标点,最后一个是管径
# for ax in final_ax:
# final_a.append(ax)
# for ay in final_ay:
# final_a.append(ay)
# final_a.append(diameter_a)
# final_b = []
# for bx in final_bx:
# final_b.append(bx)
# for by in final_by:
# final_b.append(by)
# final_b.append(diameter_b)
# final_c = []
# for cx in final_cx:
# final_c.append(cx)
# for cy in final_cy:
# final_c.append(cy)
# final_c.append(diameter_c)
# finalabc = [final_a,final_b,final_c]
# finaldata.append(finalabc)
# finaldata = np.array(finaldata)
# #复制改变a,不改变b
# finaldata1 = finaldata.copy()
# finaldata2 = finaldata.copy()
# finaldata3 = finaldata.copy()
# #以定点为中心,进行镜像处理
# finaldata1[:,:,0:10] = 2 * pointx -finaldata[:,:,0:10]
# finaldata2[:,:,10:20] = 2 * pointx -finaldata[:,:,10:20]
# finaldata3[:,:,0:20] = 2 * pointx -finaldata[:,:,0:20]
# final = np.concatenate((finaldata,finaldata1,finaldata2,finaldata3),axis=0)
# np.random.shuffle(final)#随机打乱数据,若没有次句,将连续输出一个方向
# print(final.shape)
# # np.save('C:\\Users\\Administrator\\Desktop\\第9周\\80000.npy',final)
# ###########################################
# # 单个可视化图像
# for i in range(len(final)):
# abc = final[i]
# plt.plot(abc[0][0:10],abc[0][10:20],color='blue',linewidth=1.5)
# plt.plot(abc[1][0:10],abc[1][10:20],color='red',linewidth=1.5)
# plt.plot(abc[2][0:10],abc[2][10:20],color='green',linewidth=1.5)
# plt.axis('off')
# plt.savefig('C:\\Users\\Administrator\\Desktop\\ttt\\原图2\\random%d.jpg' %i,dpi=100)
# plt.close()
###########################################
# 分块可视化图像
# data = np.load('C:\\Users\\Administrator\\Desktop\\第8周\\10000.npy')
# print(data.shape)
# rows,cols = 5,5
# fig,axs = plt.subplots(rows,cols)
# cnt = 0
# for i in range(rows):
# for j in range(cols):
# xy = final[cnt]#第n个分叉图,有三个分支,每个分支21个数
# for k in range(len(xy)):
# x = xy[k][0:10]
# y = xy[k][10:20]
# if k == 0 :
# axs[i,j].plot(x,y,color='blue',linewidth=xy[k][20]*15)
# if k == 1:
# axs[i,j].plot(x,y,color='red',linewidth=xy[k][20]*15)
# if k == 2:
# axs[i,j].plot(x,y,color='green',linewidth=xy[k][20]*15)
# axs[i,j].axis('off')
# cnt +=1
# # plt.savefig('C:\\Users\\Administrator\\Desktop\\第9周\\')
# plt.show()
|
以上这篇Python绘制并保存指定大小图像的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/qq_38826019/article/details/81082456