UOJ#428. 【集训队作业2018】普通的计数题

时间:2022-08-26 21:27:48

#428. 【集训队作业2018】普通的计数题

模型转化好题

UOJ#428. 【集训队作业2018】普通的计数题

所以变成统计有标号合法的树的个数。

合法限制:

1.根标号比子树都大

2.如果儿子全是叶子,数量B中有

3.如果存在一个儿子不是叶子,数量A中有

然后考虑DP

直接枚举根的儿子的情况

UOJ#428. 【集训队作业2018】普通的计数题

cdq分治NTT还是很恶心的

不光是自己卷自己,还是互相卷

进行一番化简和平移之后,可以转化为cdq分治NTT的形式:

UOJ#428. 【集训队作业2018】普通的计数题

怎么好做怎么来。

反正我最后推的式子有如下特点(式子就不写了):

为了方便,钦定g[0],f[0],g[1],f[1]都是0

对于f,a是固定的,a向右平移一下,然后就是cdq分治的模板题了

对于g,当cdq的分治区间l不是0的时候,要F作为[l,mid],G作为[ql,qr],和G作为[l,mid],F作为[ql,qr]做两遍

这样其实剩下g[n]=g[0]*f[n],但是g[0]=0,所以不用管

代码:

const int N=+;
int jie[N],inv[N];
int f[N],g[N];
int n,sa,sb;
int ta[N],b[N],a[N];
void divi(int l,int r,int ql,int qr){
// cout<<" divi "<<l<<" "<<r<<" ql "<<ql<<" qr "<<qr<<endl;
if(l==&&r==){
f[]=f[]=g[]=g[]=;
return;
}
if(l==r){
f[l]=ad(mul(f[l],jie[l-]),b[l-]);
g[l]=ad(f[l],mul(g[l],jie[l-]));
f[l]=mul(f[l],inv[l-]);
g[l]=mul(g[l],inv[l]);
return;
}
int mid=(l+r)>>;
int qmd=(ql+qr)>>;
divi(l,mid,ql,qmd);
Poly A,G;
A.resize(qr-ql+);
G.resize(mid-l+);
for(reg i=ql;i<=qr;++i){
A[i-ql]=a[i];
}
for(reg i=l;i<=mid;++i){
G[i-l]=g[i];
}
A*=G;
for(reg i=mid+;i<=r;++i){
f[i]=ad(f[i],A[i-l]);
} if(l==){
Poly F;G.clear();
F.resize(mid-l+);
G.resize(mid-l+);
for(reg i=l;i<=mid;++i){
F[i-l]=f[i];
G[i-l]=g[i];
}
F=F*G;
for(reg i=mid+;i<=r;++i){
g[i]=ad(g[i],F[i]);
}
}else{
Poly F;G.clear();
F.resize(qr-ql+);
G.resize(mid-l+);
for(reg i=l;i<=mid;++i){
G[i-l]=g[i];
}
for(reg i=ql;i<=qr;++i){
F[i-ql]=f[i];
}
F=F*G;
for(reg i=mid+;i<=r;++i){
g[i]=ad(g[i],F[i-l]);
}
F.clear();G.clear();
F.resize(mid-l+);
G.resize(qr-ql+);
for(reg i=ql;i<=qr;++i){
G[i-ql]=g[i];
}
for(reg i=l;i<=mid;++i){
F[i-l]=f[i];
}
F=F*G;
for(reg i=mid+;i<=r;++i){
g[i]=ad(g[i],F[i-l]);
}
}
divi(mid+,r,ql,qmd);
}
int main(){
rd(n);rd(sa);rd(sb);int x;
for(reg i=;i<=sa;++i){rd(x);ta[x]=;}
for(reg i=;i<=sb;++i){rd(x);b[x]=;}
if(n==){
puts("");return ;
}
int m;
for(m=;m<=n;m<<=);
jie[]=;
for(reg i=;i<=m;++i) jie[i]=mul(jie[i-],i);
inv[m]=qm(jie[m],mod-);
for(reg i=m-;i>=;--i) inv[i]=mul(inv[i+],i+); for(reg i=;i<=m;++i){
a[i]=mul(ta[i-],inv[i-]);
}
a[]=; divi(,m-,,m-);
ll ans=f[n];
ans=mul(ans,jie[n-]);
ot(ans);
return ;
}

树形结构很巧妙啊

f,g互相卷的分治NTT第一次写,还是举一个0,1,2,3,4,5,6,7的例子最好理解了!

UOJ#428. 【集训队作业2018】普通的计数题的更多相关文章

  1. uoj &num;450&lbrack;集训队作业2018&rsqb;复读机

    传送门 \(d=1\),那么任何时刻都可以\(k\)个复读机的一种,答案为\(k^n\) \(d>1\),可以枚举某个复读机的复读次数(必须是\(d\)的倍数),然后第\(i\)个复读时间为\( ...

  2. UOJ 422 &lbrack;集训队作业2018&rsqb; 小Z的礼物 min-max容斥 期望 轮廓线dp

    LINK:小Z的礼物 太精髓了 我重学了一遍min-max容斥 重写了一遍按位或才写这道题的. 还是期望多少时间可以全部集齐. 相当于求出 \(E(max(S))\)表示最后一个出现的期望时间. 根据 ...

  3. 【UOJ&num;450】【集训队作业2018】复读机(生成函数,单位根反演)

    [UOJ#450][集训队作业2018]复读机(生成函数,单位根反演) 题面 UOJ 题解 似乎是\(\mbox{Anson}\)爷的题. \(d=1\)的时候,随便怎么都行,答案就是\(k^n\). ...

  4. 【UOJ&num;422】【集训队作业2018】小Z的礼物(min-max容斥,轮廓线dp)

    [UOJ#422][集训队作业2018]小Z的礼物(min-max容斥,轮廓线dp) 题面 UOJ 题解 毒瘤xzy,怎么能搬这种题当做WC模拟题QwQ 一开始开错题了,根本就不会做. 后来发现是每次 ...

  5. UOJ &num;449&period; 【集训队作业2018】喂鸽子

    UOJ #449. [集训队作业2018]喂鸽子 小Z是养鸽子的人.一天,小Z给鸽子们喂玉米吃.一共有n只鸽子,小Z每秒会等概率选择一只鸽子并给他一粒玉米.一只鸽子饱了当且仅当它吃了的玉米粒数量\(≥ ...

  6. UOJ&num;418&period; 【集训队作业2018】三角形

    #418. [集训队作业2018]三角形 和三角形没有关系 只要知道儿子放置的顺序,就可以直接模拟了 记录历史最大值 用一个pair(a,b):之后加上a个,期间最大值为增加b个 合并? A1+A2= ...

  7. UOJ&num;422&period; 【集训队作业2018】小Z的礼物

    #422. [集训队作业2018]小Z的礼物 min-max容斥 转化为每个集合最早被染色的期望时间 如果有x个选择可以染色,那么期望时间就是((n-1)*m+(m-1)*n))/x 但是x会变,中途 ...

  8. &lbrack;集训队作业2018&rsqb;蜀道难——TopTree&plus;贪心&plus;树链剖分&plus;链分治&plus;树形DP

    题目链接: [集训队作业2018]蜀道难 题目大意:给出一棵$n$个节点的树,要求给每个点赋一个$1\sim n$之内的权值使所有点的权值是$1\sim n$的一个排列,定义一条边的权值为两端点权值差 ...

  9. &lbrack;UOJ422&rsqb;&lbrack;集训队作业2018&rsqb;小Z的礼物——轮廓线DP&plus;min-max容斥

    题目链接: [集训队作业2018]小Z的礼物 题目要求的就是最后一个喜欢的物品的期望得到时间. 根据$min-max$容斥可以知道$E(max(S))=\sum\limits_{T\subseteq ...

随机推荐

  1. DataSet与DataTable与DataRow的关系

    1. 添加数据: DataRow dr=MyDataSet.Tables["User"].NewRow(); dr["UserName"] = "张三 ...

  2. UV动画

    [猫猫的Unity Shader之旅]之纹理映射 http://blog.csdn.net/dbtxdxy/article/details/46954417 [猫猫的Unity Shader之旅]之U ...

  3. jQuery实现的表格展开伸缩效果实例

    <table> <thead> <tr> <th>姓名</th> <th>性别</th> <th>暂住地 ...

  4. MindManger学习技巧

    ctrl+shift+f 字体颜色

  5. 可在广域网部署运行的QQ高仿版 -- GG叽叽V3&period;2,增加离线消息、离线文件功能(源码)

    (几句题外话:虽然就如何将GG发展为一个有商业价值的产品,我还没有很清晰明确的思路,但是从GG发布以来,通过GG认识了一些朋友,也接了一些小单子,赚了一点小钱.有了一点甜头,目前和2.3个好朋友一起做 ...

  6. Effective C&plus;&plus; -----条款09:绝不在构造和析构过程中调用virtual函数

    在构造和析构期间不要调用virtual函数,因为这类调用从不下降至derived class(比起当前执行构造函数和析构函数的那层).

  7. &lbrack;转载&rsqb;MongoDB优化的几点原则

    .查询优化 确认你的查询是否充分利用到了索引,用explain命令查看一下查询执行的情况,添加必要的索引,避免扫表操作. .搞清你的热数据大小 可能你的数据集非常大,但是这并不那么重要,重要的是你的热 ...

  8. python默认编码设置

      打开python 的gui,输入 1 2 import sys sys.getdefaultencoding() 查询系统当前默认编码 默认情况下显示编码方式为ASCII 在python安装目录下 ...

  9. docker--容器和镜像的导入导出及部署

    一.镜像导出 save 1.查看镜像 docker images 2.导出镜像 docker save -o test.tar image_name 或 docker save image_name ...

  10. element UI table 过滤 筛选问题

    一.问提描述    使用elementUI table 官方筛选案例,发现筛选不是服务器端筛选,而是浏览器端对每一页进行单独筛选. 如何在服务器端筛选? 二.查询Element UI 官网table组 ...