以下内容转载自:http://www.aboutyun.com/thread-6855-1-1.html
个人观点:大数据我们都知道hadoop,但并不都是hadoop.我们该如何构建大数据库项目。对于离线处理,hadoop还是比较适合的,但是对于实时性比较强的,数据量比较大的,我们可以采用Storm,那么Storm和什么技术搭配,才能够做一个适合自己的项目。下面给大家可以参考。
可以带着下面问题来阅读本文章:
1.一个好的项目架构应该具备什么特点?
2.本项目架构是如何保证数据准确性的?
3.什么是Kafka?
4.flume+kafka如何整合?
5.使用什么脚本可以查看flume有没有往Kafka传输数据
做软件开发的都知道模块化思想,这样设计的原因有两方面:
一方面是可以模块化,功能划分更加清晰,从“数据采集--数据接入--流失计算--数据输出/存储”
那么接下来我们来看下整体的架构图
详细介绍各个组件及安装配置: 操作系统:ubuntu
Flume Flume是Cloudera提供的一个分布式、可靠、和高可用的海量日志采集、聚合和传输的日志收集系统,支持在日志系统中定制各类数据发送方,用于收集数据;同时,Flume提供对数据进行简单处理,并写到各种数据接受方(可定制)的能力。 下图为flume典型的体系结构: Flume数据源以及输出方式: Flume提供了从console(控制台)、RPC(Thrift-RPC)、text(文件)、tail(UNIX tail)、syslog(syslog日志系统,支持TCP和UDP等2种模式),exec(命令执行)等数据源上收集数据的能力,在我们的系统中目前使用exec方式进行日志采集。 Flume的数据接受方,可以是console(控制台)、text(文件)、dfs(HDFS文件)、RPC(Thrift-RPC)和syslogTCP(TCP syslog日志系统)等。在我们系统中由kafka来接收。
Flume下载及文档: http://flume.apache.org/ Flume安装: Flume启动命令:
Kafka
kafka是一种高吞吐量的分布式发布订阅消息系统,她有如下特性:
- 通过O(1)的磁盘数据结构提供消息的持久化,这种结构对于即使数以TB的消息存储也能够保持长时间的稳定性能。
- 高吞吐量:即使是非常普通的硬件kafka也可以支持每秒数十万的消息。
- 支持通过kafka服务器和消费机集群来分区消息。
- 支持Hadoop并行数据加载。
Kafka版本:0.8.0 Kafka下载及文档:http://kafka.apache.org/ Kafka安装: 启动及测试命令: (1) start server
这里是官网上的教程,kafka本身有内置zookeeper,但是我自己在实际部署中是使用单独的zookeeper集群,所以第一行命令我就没执行,这里只是些出来给大家看下。
配置独立的zookeeper集群需要配置server.properties文件,讲zookeeper.connect修改为独立集群的IP和端口
(2)Create a topic
(3)Send some messages
(4)Start a consumer
kafka-console-producer.sh和kafka-console-cousumer.sh只是系统提供的命令行工具。这里启动是为了测试是否能正常生产消费;验证流程正确性 在实际开发中还是要自行开发自己的生产者与消费者; kafka的安装也可以参考我之前写的文章:http://blog.csdn.net/weijonathan/article/details/18075967 Storm Twitter将Storm正式开源了,这是一个分布式的、容错的实时计算系统,它被托管在GitHub上,遵循 Eclipse Public License 1.0。Storm是由BackType开发的实时处理系统,BackType现在已在Twitter麾下。GitHub上的最新版本是Storm 0.5.2,基本是用Clojure写的。
Storm的主要特点如下:
- 简单的编程模型。类似于MapReduce降低了并行批处理复杂性,Storm降低了进行实时处理的复杂性。
- 可以使用各种编程语言。你可以在Storm之上使用各种编程语言。默认支持Clojure、Java、Ruby和Python。要增加对其他语言的支持,只需实现一个简单的Storm通信协议即可。
- 容错性。Storm会管理工作进程和节点的故障。
- 水平扩展。计算是在多个线程、进程和服务器之间并行进行的。
- 可靠的消息处理。Storm保证每个消息至少能得到一次完整处理。任务失败时,它会负责从消息源重试消息。
- 快速。系统的设计保证了消息能得到快速的处理,使用ØMQ作为其底层消息队列。(0.9.0.1版本支持ØMQ和netty两种模式)
- 本地模式。Storm有一个“本地模式”,可以在处理过程中完全模拟Storm集群。这让你可以快速进行开发和单元测试。
flume和kafka整合 1.下载flume-kafka-plus:https://github.com/beyondj2ee/flumeng-kafka-plugin 2.提取插件中的flume-conf.properties文件 修改该文件:#source section producer.sources.s.type = exec
producer.sources.s.command = tail -f -n+1 /mnt/hgfs/vmshare/test.log
producer.sources.s.channels = c 修改所有topic的值改为test 将改后的配置文件放进flume/conf目录下 在该项目中提取以下jar包放入环境中flume的lib下:
注:这里的flumeng-kafka-plugin.jar这个包,后面在github项目中已经移动到package目录了。找不到的童鞋可以到package目录获取。
完成上面的步骤之后,我们来测试下flume+kafka这个流程有没有走通; 我们先启动flume,然后再启动kafka,启动步骤按之前的步骤执行;接下来我们使用kafka的kafka-console-consumer.sh脚本查看是否有flume有没有往Kafka传输数据;
以上这个是我的test.log文件通过flume抓取传到kafka的数据;说明我们的flume和kafka流程走通了; 大家还记得刚开始我们的流程图么,其中有一步是通过flume到kafka,还有一步是到hdfs的;而我们这边还没有提到如何存入kafka且同时存如hdfs; flume是支持数据同步复制,同步复制流程图如下,取自于flume官网,官网用户指南地址:http://flume.apache.org/FlumeUserGuide.html
怎么设置同步复制呢,看下面的配置:
具体配置大伙根据自己的需求去设置,这里就不具体举例了
kafka和storm的整合
1.下载kafka-storm0.8插件:https://github.com/wurstmeister/storm-kafka-0.8-plus 2.使用maven package进行编译,得到storm-kafka-0.8-plus-0.3.0-SNAPSHOT.jar包 --有转载的童鞋注意下,这里的包名之前写错了,现在改正确了!不好意思! 3.将该jar包及kafka_2.9.2-0.8.0-beta1.jar、metrics-core-2.2.0.jar、scala-library-2.9.2.jar (这三个jar包在kafka项目中能找到) 备注:如果开发的项目需要其他jar,记得也要放进storm的Lib中比如用到了mysql就要添加mysql-connector-java-5.1.22-bin.jar到storm的lib下 那么接下来我们把storm也重启下; 完成以上步骤之后,我们还有一件事情要做,就是使用kafka-storm0.8插件,写一个自己的Storm程序; 这里我给大伙附上一个我弄的storm程序,百度网盘分享地址:链接: http://pan.baidu.com/s/1jGBp99W 密码: 9arq 先稍微看下程序的创建Topology代码
数据操作主要在WordCounter类中,这里只是使用简单JDBC进行插入处理
这里只需要输入一个参数作为Topology名称就可以了!我们这里使用本地模式,所以不输入参数,直接看流程是否走通;
先看下日志,这里打印出来了往数据库里面插入数据了
然后我们查看下数据库;插入成功了!
到这里我们的整个整合就完成了! 但是这里还有一个问题,不知道大伙有没有发现。 由于我们使用storm进行分布式流式计算,那么分布式最需要注意的是数据一致性以及避免脏数据的产生;所以我提供的测试项目只能用于测试,正式开发不能这样处理; 晨色星空J2EE(一个网名)给的建议是建立一个zookeeper的分布式全局锁,保证数据一致性,避免脏数据录入! zookeeper客户端框架大伙可以使用Netflix Curator来完成,由于这块我还没去看,所以只能写到这里了!
http://blog.csdn.net/weijonathan/article/details/18301321
来自群组: Hadoop技术组