题目链接:BZOJ - 3207
题目分析
先使用Hash,把每个长度为 k 的序列转为一个整数,然后题目就转化为了询问某个区间内有没有整数 x 。
这一步可以使用可持久化线段树来做,虽然感觉可以有更简单的做法,但是我没有什么想法...
代码
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <cstring>
#include <cmath> using namespace std; const int MaxN = 200000 + 5, P = 233, Mod = 3371723, MaxNode = 8000000 + 5; int n, m, k, en, TL_Index, Node_Index;
int A[MaxN], B[MaxN], Root[MaxN], Lc[MaxNode], Rc[MaxNode], T[MaxNode]; struct HashNode
{
int Pos, TL;
HashNode *Next;
} H[MaxN], *Ph = H, *Hash[Mod + 5]; bool Cmp(int *AA, int x, int *AB, int y) {
for (int i = 0; i < k; ++i)
if (AA[x + i] != AB[y + i]) return false;
return true;
} void Insert(int &Now, int Last, int s, int t, int x) {
if (Now == 0) Now = ++Node_Index;
if (s == t) {
T[Now] = T[Last] + 1;
return;
}
int m = (s + t) >> 1;
if (x <= m) {
Rc[Now] = Rc[Last];
Insert(Lc[Now], Lc[Last], s, m, x);
}
else {
Lc[Now] = Lc[Last];
Insert(Rc[Now], Rc[Last], m + 1, t, x);
}
} int main()
{
scanf("%d%d%d", &n, &m, &k);
for (int i = 1; i <= n; ++i) scanf("%d", &A[i]);
en = n - k + 1;
int HN, TL_i;
HashNode *Now;
TL_Index = 0;
Node_Index = 0;
for (int i = 1; i <= en; ++i) {
HN = 0;
for (int j = i; j < i + k; ++j) {
HN = HN * P + A[j];
if (HN > Mod) HN %= Mod;
}
Now = Hash[HN];
TL_i = 0;
while (Now != NULL) {
if (Cmp(A, i, A, Now -> Pos)) {
TL_i = Now -> TL;
break;
}
Now = Now -> Next;
}
if (TL_i == 0) {
++Ph; Ph -> Pos = i;
Ph -> TL = TL_i = ++TL_Index;
Ph -> Next = Hash[HN]; Hash[HN] = Ph;
}
Insert(Root[i], Root[i - 1], 1, n, TL_i);
}
int l, r, s, t, mid, x, y;
for (int i = 1; i <= m; ++i) {
scanf("%d%d", &l, &r);
for (int j = 1; j <= k; ++j) scanf("%d", &B[j]);
HN = 0;
for (int j = 1; j <= k; ++j) {
HN = HN * P + B[j];
if (HN > Mod) HN %= Mod;
}
TL_i = 0;
Now = Hash[HN];
while (Now != NULL) {
if (Cmp(B, 1, A, Now -> Pos)) {
TL_i = Now -> TL;
break;
}
Now = Now -> Next;
}
if (TL_i == 0 || r - l + 1 < k) printf("Yes\n");
else {
r = r - k + 1;
x = Root[l - 1]; y = Root[r];
s = 1; t = n;
while (s != t) {
mid = (s + t) >> 1;
if (TL_i <= mid) {
x = Lc[x]; y = Lc[y];
t = mid;
}
else {
x = Rc[x]; y = Rc[y];
s = mid + 1;
}
}
if (T[y] - T[x] > 0) printf("No\n");
else printf("Yes\n");
}
}
return 0;
}