我就废话不多说了,直接上代码吧!
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
|
#-*- coding:utf-8 -*-
import tensorflow as tf
import numpy as np
value1 = tf.placeholder(dtype = tf.float32)
value2 = tf.placeholder(dtype = tf.float32)
value3 = value1 + value2
#定义的dataset有参数,只能使用参数化迭代器
dataset = tf.data.Dataset. range ( 10 )
# 定义参数化迭代器
dataset = dataset.shuffle( 100 )
dataset = dataset. apply (tf.contrib.data.batch_and_drop_remainder( 3 )) #每个batch3个数据,不足3个舍弃
iterator = dataset.make_initializable_iterator()
next_element = iterator.get_next()
with tf.Session() as sess:
# 需要用参数初始化迭代器
for i in range ( 2 ):
sess.run(iterator.initializer)
while True :
try :
value = sess.run(next_element)
result = sess.run(value3,feed_dict = {value1:value,value2:value})
print (result)
except tf.errors.OutOfRangeError:
print ( "End of epoch %d" % i)
break
|
以上这篇在tensorflow中实现去除不足一个batch的数据就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/qq_36076233/article/details/81063127