Python + OpenCV 直接上代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
|
import cv2
import numpy as np
from matplotlib import pyplot as plt
from PIL import Image
GrayImage = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) #将BGR图转为灰度图
ret,thresh1 = cv2.threshold(GrayImage, 130 , 255 ,cv2.THRESH_BINARY) #将图片进行二值化(130,255)之间的点均变为255(背景)
# print(thresh1[0,0])#250 输出[0,0]这个点的像素值 #返回值ret为阈值
# print(ret)#130
(h,w) = thresh1.shape #返回高和宽
# print(h,w)#s输出高和宽
a = [ 0 for z in range ( 0 , w)]
print (a) #a = [0,0,0,0,0,0,0,0,0,0,...,0,0]初始化一个长度为w的数组,用于记录每一列的黑点个数
#记录每一列的波峰
for j in range ( 0 ,w): #遍历一列
for i in range ( 0 ,h): #遍历一行
if thresh1[i,j] = = 0 : #如果改点为黑点
a[j] + = 1 #该列的计数器加一计数
thresh1[i,j] = 255 #记录完后将其变为白色
# print (j)
#
for j in range ( 0 ,w): #遍历每一列
for i in range ((h - a[j]),h): #从该列应该变黑的最顶部的点开始向最底部涂黑
thresh1[i,j] = 0 #涂黑
#此时的thresh1便是一张图像向垂直方向上投影的直方图
#如果要分割字符的话,其实并不需要把这张图给画出来,只需要的到a=[]即可得到想要的信息
# img2 =Image.open('0002.jpg')
# img2.convert('L')
# img_1 = np.array(img2)
plt.imshow(thresh1,cmap = plt.gray())
plt.show()
cv2.imshow( 'img' ,thresh1)
cv2.waitKey( 0 )
cv2.destroyAllWindows()
|
原图:
运行结果:
在水平方向上进行投影,代码如下所示(原理同上):
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
|
import cv2
import numpy as np
from matplotlib import pyplot as plt
from PIL import Image
img = cv2.imread( 'C:/Users/Jet Zhang/Desktop/50/50/cut.png' )
GrayImage = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
ret,thresh1 = cv2.threshold(GrayImage, 130 , 255 ,cv2.THRESH_BINARY)
(h,w) = thresh1.shape #返回高和宽
a = [ 0 for z in range ( 0 , h)]
print (a)
for j in range ( 0 ,h):
for i in range ( 0 ,w):
if thresh1[j,i] = = 0 :
a[j] + = 1
thresh1[j,i] = 255
for j in range ( 0 ,h):
for i in range ( 0 ,a[j]):
thresh1[j,i] = 0
plt.imshow(thresh1,cmap = plt.gray())
plt.show()
|
效果图如下所示:
以上这篇Python实现图像的垂直投影示例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/qq_37053885/article/details/79248986