Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BST.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”
_______6______ / \ ___2__ ___8__ / \ / \ 0 _4 7 9 / \ 3 5
For example, the lowest common ancestor (LCA) of nodes 2
and 8
is 6
. Another example is LCA of nodes 2
and 4
is 2
, since a node can be a descendant of itself according to the LCA definition.
这道题不难。主要是先要搞清楚LCA的定义。
然后LCA呢只会分为三种情况,如果P,Q中最大值的那个都小于root的值,那么LCA只能在左边了。反正如果P,Q中最小值的那个都大于root的值,那么LCA肯定只能在右边。如果这两种情况都不是,那么就是最特殊的一种。LCA直接就是root。因为没有办法把这两个node一起放在一边子树去了。
代码如下。~
/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ public class Solution { public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) { if(root==null){ return null; } if(Math.max(p.val,q.val)<root.val){ return lowestCommonAncestor(root.left,p,q); }else if(Math.min(p.val,q.val)>root.val){ return lowestCommonAncestor(root.right,p,q); } return root; } }